NASA TECHNICAL NOTE

NASA TN D-6078

c, 1

LOAN COPY: RETURE AFWL (DOGL)

INVESTIGATION OF A MIXED-COMPRESSION AXISYMMETRIC INLET SYSTEM AT MACH NUMBERS 0.6 TO 3.5

by Donald B. Smeltzer and Norman E. Sorensen Ames Research Center Moffett Field, Calif. 94035

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . NOVEMBER 1970

\$3.00

246

			([EE] EE
1. Report No.	2. Government Acc	ession No.	13. Rec. 0132713
NASA TN D-6078	1		1
4. Title and Subtitle			5. Report Date
			November 1970
INVESTIGATION OF A MIXE	ED-COMPRESSION AXIS	YMMETRIC INLET	
SYSTEM AT MACH NUMBER	S 0.6 TO 3.5		6. Performing Organization Code
7. Author(s)			8. Performing Organization Report No.
Donald B. Smeltzer and Norman	E. Sorensen		A-3516
			10. Work Unit No.
9. Performing Organization Name and A	14		720-03-01-10-00-21
9. Performing Organization Name and A	aaress		/20-03-01-10-00-21
NASA Ames Research Center Moffett Field, Calif., 94035			11. Contract or Grant No.
			13. Type of Report and Period Covered
12. Sponsoring Agency Name and Addre	ess		Technical Note
National Aeronautics and Space Washington, D. C., 20546	Administration		14. Sponsoring Agency Code
15. Supplementary Notes			
16. Abstract			
capture diameters long, measured the throat to reduce the total poth the cowl and centerbody located on the cowl surface just to the major performance pawere determined as a function tolerance to change in angle of a zero bypass, total-pressure recover to 21 percent. The total-pressure 15 psia which, at Mach number range, data were obtained at Machine total percent.	If from the cowl lip to the elements of the subsonic aupstream of the engine face arameters of bleed mass-floor pays mass-floor ratio attack, boundary-layer proferry ranged from 84.5 to 86 edistortion level was about 3.5, corresponded to a unich number increments of this of 0.1 between Mach number increments of the pressure of the present the contract of the pressure of the contract of the contr	ngine face. Vortex generation face. A boundary- and supersonic diffuser. ow ratio, total-pressure o. Other results obtain iles, and surface-pressure 0.5 percent at the engine t 5 percent. Testing was nit Reynolds number o 0.25 between Mach num	n of the cowl. The inlet system was 1.4 ators were installed just downstream of layer removal system was provided on An engine airflow bypass system was recovery, and total-pressure distortion led were transonic additive drag, inlet distributions. At Mach number 3.5 and face with a bleed mass-flow ratio of 14 conducted at a tunnel total pressure of f about 1.6×10 ⁶ /ft. In the supersonic libers 1.5 and 3.5, and in the transonic lil Mach numbers, data were obtained at
17. Key Words (Suggested by Author(s) Air breathing Inlets Propulsion) Ducts Boundary layers Internal flow	18. Distribution Staten Unclassified — Un	
	1	<u> </u>	
19. Security Classif, (of this report)	20. Security Classif	f. (of this page)	21. No. of Pages 22. Price*

Unclassified

Unclassified

SYMBOLS

A_C capture area

Amin minimum area

A_X local duct area normal to the inlet centerline

 C_{D_a} additive drag coefficient based on A_c

D capture diameter 20 in. (50.8 cm)

d local diameter

h local height

l local dimension

M Mach number

m mass flow

p static pressure

pt total pressure

 Δp_{t_2} total pressure distortion parameter, $\frac{p_{t_2}}{\bar{p}_{t_2}}$

R capture area radius

 $\frac{\mathbf{r}}{\mathbf{R}}$ ratio of local radius to capture area radius

 $\frac{X}{R}$ ratio of axial distance from the tip of the centerbody to the capture-area radius

 $\left(\frac{x}{R}\right)_{C}$ ratio of axial distance from the cowl lip to the capture-area radius

 $\left(\frac{X}{R}\right)$ axial distance from the cone tip to the cowl lip ratioed to the capture-area radius

 $\frac{\Delta x}{R}$ incremental, $\frac{x}{R}$

angle of attack, deg α angle of attack for incipient unstart, deg $\alpha_{\rm uns}$ $(\overline{})$ average value Subscripts bleed bl bp bypass đ downstream i inlet lip (measured)(transonic results only) local 1

o inlet lip (theoretical)

u upstream

throat

engine face

∞ free stream

NOTE: The letters A, B, and C on the plotted and tabulated data refer to progressively restricted bleed exit settings, A being the maximum flow condition and C the most restricted.

INVESTIGATION OF A MIXED-COMPRESSION AXISYMMETRIC INLET SYSTEM

AT MACH NUMBERS 0.6 TO 3.5

Donald B. Smeltzer and Norman E. Sorensen

Ames Research Center

SUMMARY

A 20-inch (50.8 cm) capture diameter model of a mixed-compression axisymmetric inlet system was tested at the design Mach number of 3.5 and off-design conditions. The variable geometry inlet system was 1.4 capture diameters long measured from the cowl lip to the engine face. Vortex generators were used just downstream of the throat to reduce the total-pressure distortion at the engine face. A boundary-layer removal system was provided on both the cowl and centerbody surfaces of the subsonic and supersonic diffuser. An engine airflow bypass system was located just upstream of the engine face. Struts similar to those used on a full-scale inlet system upstream of the engine face were not provided.

The main test objective was to investigate the major inlet parameters of bleed mass flow, total-pressure recovery, and total-pressure distortion at the engine face with various amounts of bypass mass flow. Tests were conducted over the Mach number range 0.6 to 3.5 at a wind-tunnel pressure of 15 psia which, at Mach number 3.5, corresponded to a unit Reynolds number of about 1.6×10^6 /ft. Results were obtained at angles of attack from 0° and 8°.

The supersonic diffuser was designed with the aid of a computer program which employs the method of characteristics. The subsonic diffuser was designed to have a linear variation of Mach number with distance from the end of the throat to the engine face.

At Mach number 3.5 and with zero bypass the maximum total-pressure recovery ranged from 84.5 to 89.5 percent as the bleed mass-flow ratio increased from 14 to 21.5 percent and the total-pressure distortion remained approximately constant at 5 percent. At Mach numbers less than 3.5 and with zero bypass, maximum total-pressure recovery was generally about the same or slightly better, but total-pressure distortion was generally higher. Total-pressure recovery generally decreased slowly with increasing bypass throughout the Mach number range while total-pressure distortion remained about the same or slightly lower. Results obtained throughout the Mach number range at 2° angle of attack showed only small decreases in maximum total-pressure recovery and about the same total-pressure distortion. However, at larger angles of attack (5° and 8°), considerable decreases in maximum total-pressure recovery and increases in total-pressure distortion occurred.

Other results indicated that when operated at maximum pressure recovery (contraction ratio 7.22) at Mach number 3.5, the inlet unstarted at approximately 1° angle of attack. A small decrease in contraction ratio and withdrawal of the terminal shock wave downstream permitted operation without unstart to about 2.4° angle of attack with only a small performance penalty.

INTRODUCTION

As the design Mach number of cruise vehicles increases, the achievement of a satisfactory inlet system becomes more difficult. The attainment of high total-pressure recovery and low total-pressure distortion with small amounts of boundary-layer bleed has been demonstrated for inlets designed for Mach numbers 2.5 and 3.0. These results are shown in references 1, 2, and 3. However, at higher design Mach numbers, the requirement that the inlet system be as short as possible results in increasingly severe adverse pressure gradients acting on the boundary layer. Because of this, it was uncertain as to whether or not high total-pressure recovery and low total-pressure distortion could be achieved without excessive boundary-layer bleed. The main purpose of the study was, therefore, to investigate the major inlet parameters of total-pressure recovery and total-pressure distortion as a function of boundary-layer bleed. In addition, because an engine airflow bypass system was included in the design, it was desired to investigate the effect of bypass mass flow on the principle performance parameters. Reference 4 compares some of the present results with the results of references 1, 2, and 3.

The supersonic diffuser was designed with the aid of the computer program, which employs the method of characteristics (ref. 5). The subsonic diffuser was designed to yield a linear variation of Mach number with distance. The resulting model had a mixed-compression supersonic diffuser with a 20-inch (50.8 cm) capture diameter and was matched to a very short subsonic diffuser producing a length of 1.4 capture diameters measured from the cowl lip to the engine face. The model was designed so that, at Mach number 3.5, the shock wave from the conical centerbody was just upstream of the cowl lip. The area distributions required for operation throughout the Mach number range were achieved by translation of the cowl. Vortex generators were incorporated on the cowl and centerbody surfaces just downstream of the throat to reduce the total-pressure distortion at the engine face. A boundary-layer removal system to control boundary-layer separation was provided on both the cowl and centerbody surfaces. A bypass airflow system for simulating engine airflow matching and inlet restarting was provided on the cowl surface just upstream of the engine face. The model is shown in figure 1 installed in one of the supersonic wind tunnels.

At Mach number 3.5 and 0° angle of attack, various combinations of bleed hole patterns were investigated. This involved varying the expanse and location of the bleed holes in both the supersonic diffuser and the throat. Combinations were investigated until it became apparent that it would be difficult to further improve performance. Data were recorded at off-design Mach numbers and at angle of attack only with the bleed hole pattern that gave the best performance at Mach number 3.5 and 0° angle of attack and all reported results are for this single bleed hole pattern. Measurements were made of total-pressure recovery and total-pressure distortion at the engine face as a function of bleed mass flow or mass flow at the engine face. The effect of bypass mass flow on these parameters was also determined. Boundary-layer profiles, surface-pressure distributions, and bleed and bypass plenum-chamber pressures were also measured. Inlet sensitivity to unstarting caused by changes in angle of attack was also determined. In addition, experimental determination of transonic additive drag was made.

MODEL

Sketches of the model and instrumentation are shown in figures 2(a) and 2(b). The model had a 20-inch (50.8 cm) capture diameter and the required off-design inlet area variations were accomplished by translation of the cowl. The cowl had a sharp 15° lip and could be translated about 0.85 capture diameters. At the exit station a translating sleeve and fixed plug controlled the terminal shock-wave position. The outer shell was attached to four hollow struts mounted on the centerbody sting support. The struts supported the cowl and provided ducting for the centerbody bleed airflow to the free stream. Four separate bleed zones and a compartmented bypass zone each had a remotely controlled exit which regulated the flow from zero to full flow. Separation of the bleed zones and compartmentation of the bypass zone prevented recirculation of the flow from the higher to the lower pressure regions. To ensure low back pressures at the bleed and bypass exits, fairings were provided as shown in figure 2(a). Further details of the design and test instrumentation are discussed in the following sections.

DESIGN

The prime objective was the attainment of high total-pressure recovery and low total-pressure distortion at the engine face with a minimum amount of bleed mass flow at the design Mach number of 3.5. The performance at lower Mach numbers, however, was not overlooked. Other objectives were to attain low cowl drag and low transonic additive drag and to keep the inlet system as short as possible.

The design principles used were those that were successful for the inlets of references 1 to 4. These included the following: The supersonic diffuser would be of a mixed-compression type; the initial cone and external cowl angles would be small; and the pressure rise across shock-wave impingement points would be kept low. In addition, flow separation could be controlled by the proper location of boundary-layer bleed, and flow distortion in the subsonic diffuser could be reduced by vortex generators. The inlet coordinates are presented in table 1 and the important aspects of the design are considered in the following paragraphs.

Supersonic Diffuser

This portion of the inlet was designed with the aid of the computer program described in reference 5, which employs the method of characteristics. Figure 3 shows the flow field output from the computer program for the design Mach number of 3.5. To achieve low cowl drag an initial internal cowl angle of 0° was selected. The requirement for low spillage drag was satisfied by the selection of a cone with a 10° half angle for the initial surface of the centerbody, x/R = 0 to 1.636. Between x/R = 1.636 and 3.800 a linear rate of change of surface slope with distance was used so that the total turning of the surface was 15° at station x/R = 3.800. The remaining contours of the cowl and centerbody were tested using the computer program until the desired conditions were attained across the inlet throat. These conditions were a uniform Mach number of about 1.25 with essentially parallel flow and a total-pressure recovery of about 0.985. Another design constraint was that the pressure rise across the shock-wave reflections on the centerbody and cowl could not

exceed the value for incipient boundary-layer separation as defined in reference 6. (Although the data in ref. 6 were obtained for two-dimensional flow, they have been used with apparent success for previous axisymmetric inlet designs.) The resulting design gave a capture mass flow at Mach number 1.0 of 33.5 percent and a cowl translation distance of about 0.67 capture diameter for operation throughout the Mach number range. No boundary-layer compensation was included in the design of the supersonic diffuser since previous experience (refs. 1, 2, and 3) indicated that with the boundary-layer removal system none would be required.

Subsonic Diffuser

The Mach number at the beginning of the subsonic diffuser was determined from the output of the computer program (fig. 3). In the throat region (x/R = 4.225 to 4.395), the centerbody and cowl surfaces diverged from one another at 2°. Because the cowl surface was a straight line from $(x/R)_c = 1.175$ to 1.535, the 2° divergence in the throat was maintained over a range of cowl translation distance. This arrangement located the minimum throat area on the centerbody at about x/R = 4.26 throughout the cowl translation from $(x/R)_{lip} = 2.825$ to 3.085. Translating the cowl farther aft shifted the minimum throat area to a forward limit of x/R = 4.18. These characteristics are illustrated in figure 4 by the inlet area distributions shown for the various Mach numbers tested. The remainder of the subsonic diffuser, from the aft end of the throat (x/R = 4.395) to the engine face (x/R = 5.650), was designed to have a linear Mach number variation, which was maintained to some degree at off-design Mach numbers. The location (x/R = 5.650) and area of the engine face were dictated by the fact that the same model used for previous tests at Mach number 3.0 was to be modified for the present investigation. Although this resulted in a short subsonic diffuser with an equivalent conical angle of 28° from the beginning of the throat to the engine face, it was believed that the vortex generators would reduce the total-pressure distortion at the engine face to an acceptable level. The area at the engine face was consistent with current estimates of an engine designed to operate at Mach number 3.5. The resulting contour provided a range of engine-face Mach numbers from about 0.15 at a free stream Mach number of 3.5 to about 0.40 at a free stream Mach number of 1.0. As in the case of the supersonic diffuser, no boundary-layer compensation was included in the design of the subsonic diffuser contour.

Bleed System

Figure 2(b) shows the bleed pattern used for all reported results and figure 3 shows the location of the bleed in the supersonic diffuser with respect to the design shock wave impingement locations.

Bleed zone 1 was located just upstream of the shock-wave impingement on the cowl. Bleed zone 2 was located just upstream of the second shock-wave impingement on the centerbody. Bleed zones 3 and 4 were located in the throat region on the cowl and centerbody surfaces, respectively, and provided a variation in bleed mass flow as the terminal shock wave moved in the throat. The tests reported in references 1 and 2 indicated that these locations would provide satisfactory control of boundary-layer growth. All bleed zones were drilled with holes with a diameter to capture radius ratio of 0.0125. Bleed zones 1 and 2 were drilled to provide a uniform porosity of 41.5 percent. Bleed zones 3 and 4 had an overall porosity of 20.8 percent. The bleed hole pattern in each zone

could be altered by filling the holes with a plastic resin material. The method used to derive the final bleed pattern was described briefly in the introduction and is more fully described in the test procedure section.

Bypass System

The bypass system was located on the cowl surface just upstream of the engine face (fig. 2(b)). Sufficient area was provided so that at all test Mach numbers, all of the main duct flow could be diverted through the bypass. The largest bypass area was required at Mach number 2.0. The cowl surface was drilled with holes with a diameter to capture radius ratio of 0.0125 to provide an overall uniform porosity of 41.5 percent (fig. 2(b)). The final bypass area included a correction for the effective area of the holes and was based upon the work reported in reference 7. The flow passed through the porous area into a plenum chamber which was divided into three separate zones (fig. 2(b)), thereby reducing the possibility of recirculation of the flow. The flow then passed to the free stream through an exit which varied the flow rate from no flow to the maximum possible through the porous area.

Vortex Generators

Vortex generators were believed necessary to avoid high total-pressure distortion at the engine face. The generators, which were slightly taller than the anticipated height of the boundary layer, were located just downstream of the throat in order to induce the mixing action where the boundary layer was relatively thin. The spacing between them was chosen to ensure uniformly mixed flow at the engine face with a minimum number of generators. These considerations were based on previous experience (refs. 1 and 2). Other design details were based on the work reported in reference 8.

INSTRUMENTATION

Pressure instrumentation consisted of total- and static-pressure tubes as well as static-pressure orifices. The position of all moving parts was determined by the use of calibrated potentiometers. Six total-pressure rakes were provided at the simulated engine face. Each rake had six tubes spaced so as to provide an area weighted average total pressure. The tube spacing is shown in the sketch in table 2. Static-pressure rakes (fig. 2(a)) were located near the main duct exit and were arranged to give an area weighted average static pressure. Static-pressure orifices were located in single opposing rows along the top internal surfaces of the cowl and centerbody. They extended to the end of the subsonic diffuser. Boundary-layer rakes were located as shown in figure 2(b). Measurements from a seven-tube total-pressure rake, at the beginning of the throat, were used to evaluate the performance of the supersonic diffuser. Four-tube total-pressure rakes each with a single static-pressure tube were mounted in the centerbody bleed ducts. Four of these rakes were mounted in the outer duct and three in the inner duct (fig. 2(b)). Pressure orifices were located in the bleed and bypass plenum chambers. To evaluate additive drag for the transonic tests, four rakes were installed at the position of maximum centerbody diameter. Five total-pressure tubes and two static-pressure tubes were included on each rake. Both total- and static-pressure tubes were located to give area weighted average pressures.

TEST PROCEDURE

The investigation was conducted in the 8- by 7-foot, 9- by 7-foot, and 11- by 11-foot test sections of the Ames Aeronautics Division Wind Tunnels. The transonic Mach number range was investigated in 0.1 increments between Mach numbers 0.6 and 1.3 and the supersonic range was investigated in 0.25 increments between Mach numbers 1.5 and 3.5. Data were obtained at angles of attack of 0° , 2° , 5° , and 8° .

Supersonic Test

Attempts were made to reduce the bleed mass flow in the supersonic diffuser (bleed zones 1 and 2) by closing rows of holes in each zone. Only consecutive rows of holes were closed at either the forward or aft end of the porous areas so that the overall porosity of the open area remained at 41.5 percent. Reducing the bleed through zones 1 and 2 in this manner caused the inlet flow to become unstable making it difficult to maintain a started condition at or near the design contraction ratio and, in addition, resulted in relatively poor performance. In the throat region (bleed zones 3 and 4), distributed patterns of varying overall porosity were attempted by closing alternate rows of holes. The best performance was obtained by concentrating the throat bleed as far upstream as possible and by having three rows of holes open on each surface (fig. 2(b)). For the selected bleed pattern (fig. 2(b)), a contraction ratio that produced the best performance was determined experimentally. Three levels of bieed mass flow were then selected by varying only the throat bleed exit settings (zones 3 and 4), because reducing the supersonic bleed exit settings was detrimental to the performance. These correspond to bleed exit settings A, B, and C on the plotted data. Exit setting A represented the maximum bleed mass flow that could be removed for the selected boundary-layer bleed-hole pattern (holes choked). Exit settings B and C represented progressively reduced bleed mass-flow ratios. All reported data were obtained with these bleed exit settings and the selected bleed pattern.

Data were obtained at supersonic Mach numbers and at angle of attack with various fixed bypass exit settings. The exit settings were different for each Mach number and were selected to yield a range of bypass mass flows from 0 to the point where all the mass flow available at the engine face could be diverted through the bypass. Most of the data at angle of attack and at off-design Mach numbers was recorded with the centerbody positioned to provide nearly the maximum contraction ratio (lowest throat Mach number) at which the inlet would remain started.

Transonic Test

Transonic results ($M_{\infty} = 0.6$ to 1.3) were obtained with the bleed exits open and closed. The bypass exit was always closed for this Mach number range. The mass flow entering the inlet was determined from measurements from the rakes mounted at the maximum centerbody diameter. Bleed and engine-face mass flows were not measured independently because of insufficient pressure ratio to choke the exits.

MEASUREMENT TECHNIQUES AND ACCURACY

The following table presents the estimated uncertainties of the primary parameters:

Parameter	Accuracy
$\bar{p}_t/p_{t_{\infty}}$	±0.005
$m_{\rm bl}/m_{\infty}$	±0.005
m_{bp}/m_{∞}	±0.02
α	±0.10°
p/p_{∞}	±0.2
M_{∞}	±0.005
m_i/m_{∞}	± 0.02 , $\alpha = 0^{\circ}$ and 2°
m_2/m_{∞}	± 0.02 , $\alpha = 0^{\circ}$ and 2°

At angles of attack of 5° and 8° , mass-flow ratios (m_2/m_{∞}) and (m_i/m_{∞}) may be in error by ± 0.050 or more because of increasing flow distortion with increasing angle of attack. The uncertainties of all the parameters except mass-flow ratio are believed to be well established on the basis of experience gained through previous tests in the Ames Aeronautics Division Wind Tunnels.

Each system used for measuring the bypass and boundary-layer bleed mass-flow rates was calibrated as follows: Each exit was varied from fully closed to fully open; the flow rates calculated from the pressure measurements and geometric flow areas in each duct were compared with simultaneously measured incremental changes in main duct mass flow. Appropriate calibration factors for the effective flow areas for each bleed duct and for the bypass duct were thus determined. For bleed mass flow, this technique is believed to give the stated accuracy since, even though the absolute magnitude of the main duct flow is known only to ±0.02, small changes in the main duct flow (0.10 or less) can be measured with much greater accuracy. Calibrations of the bleed flow ducts were made only at Mach number 3.5, but the results were believed to be equally valid at other Mach numbers as long as the exits were choked. Because the bypass involved large quantities of flow, calibrations were made at all Mach numbers, and it is believed that bypass mass flow was about as accurate as the main duct mass flow. No calibrations were made at angle of attack, but data are believed to be about as accurate at 2° as at 0°. At larger angles, increasing flow asymmetry could cause some circumferential flow in the plenum chambers which was not accounted for in the calibration procedure, and the accuracy would thus deteriorate. This procedure was used with apparent success in similar calibrations of the inlets described in references 1 and 2.

As stated previously, bleed and main duct mass flow were not measured in the transonic range because of insufficient pressure ratio to choke the exits. The inlet mass flow in this speed range was determined from rake measurements at the station of maximum centerbody diameter (additive drag rakes). These measurements were used to calculate the inlet mass-flow ratio and the total-momentum change from the free stream to the rake measurement station. They were also used with the pressure distribution on the centerbody, and a friction drag term, to compute the additive drag as explained in reference 9.

RESULTS AND DISCUSSION

The results of the investigation are presented in figures 5 to 46 and in tables 2 and 3. The inlet theoretical mass flow at 0° angle of attack is shown in figure 5 for all of the supersonic Mach numbers at which data were obtained. The mass flow plotted as a function of the location of the cowl lip was obtained from a subroutine of the computer program described in reference 5. The results obtained at Mach number 3.5 are shown in figures 6 to 21. The results shown on each of these figures are discussed in the following sections. Figures 22 to 37 show similar data for all other supersonic Mach numbers (3.25 to 1.55) but are not discussed because the discussion of the data obtained at Mach number 3.5 will suffice. Figures 38 to 43 summarize some of the results obtained throughout the supersonic Mach number range (3.50 to 1.55). A discussion of these results is included. Transonic performance is shown in figures 43 to 46 and these results are also discussed.

Bleed mass flow is used as a parameter for most of the plotted supersonic data instead of the more conventional mass flow at the engine face because it is believed to be more accurate. At 0° angle of attack, the mass flow at the engine face is obtained by subtracting the bleed and bypass mass flows from the theoretical mass flow entering the inlet. Data at angle of attack are shown as a function of mass flow at the engine face.

Data in tables 2 and 3 are from the individual tubes mounted at the engine face for the supersonic and transonic speed ranges, respectively. The sketch at the beginning of table 2 shows the location of each tube.

Table 4 is an index to the figures. Most of the off-design results include data for each Mach number tested. The quantities in parentheses were not varied for the data shown in each figure.

Performance at $M_{\infty} = 3.50$ Without Bypass

Supercritical performance—Maximum pressure recovery does not necessarily occur at the maximum inlet contraction ratio that can be achieved without unstarting the inlet. This is shown in figures 6 and 7. Supercritical performance for various positions of the cowl lip and bleed exit setting A is shown by figure 6, and the cowl lip position is related to inlet contraction ratio by figure 7. Pressure recovery is virtually unaffected for the small range of cowl lip positions $(x/R)_{lip} = 2.830 - 2.840$. However, at $(x/R)_{lip} = 2.835$, the forwardmost position of the terminal shock wave was achieved without unstarting the inlet; hence, a higher pressure recovery and higher bleed mass-flow ratio resulted. For all cowl settings, total-pressure distortion remains low (about 8 percent or less) as long as the terminal shock wave moves within the confines of the porous bleed area in the throat (zones 3 and 4). Moving the terminal shock wave downstream of the throat bleed region causes a rapid loss in total-pressure recovery, a rapid rise in total-pressure distortion, and no further change in bleed mass-flow ratio. The forwardmost position of the cowl lip shown in figure 6, $(x/R)_{lip} = 2.825$, is nearly the maximum contraction ratio that could be obtained without unstarting the inlet and also represents a position for less than maximum performance.

In an effort to increase the engine-face pressure recovery for a given amount of bleed, different amounts of bleed back pressure were investigated for the cowl lip position giving maximum pressure recovery, $(x/R)_{lip} = 2.835$. Three combinations of bleed back pressure were

selected, as described previously, and the results are shown in figure 8. These data represent the range of performance available for the selected boundary-layer bleed hole pattern. Restricting the throat bleed reduced the supercritical operating range of the inlet; that is, the combination of the change in bleed plus the change in pressure recovery over the useful operating range was greatly reduced. The range of performance was 89.5-percent recovery with 21.5-percent bleed to 84.5-percent recovery with 14-percent bleed.

Distortion— Total-pressure distortion was low (less than 8 percent) for all bleed exit settings over the useful operating range. The low level of distortion was attributable to the mixing action induced by the vortex generators and the fact that the final diffusion Mach number was low (about 0.15). The radial distortion profiles are shown in figure 9 for each bleed exit setting. All profiles are similar, but a progressively lower level of pressure recovery occurs as the bleed exits are restricted. In all cases the distortion from any single rake is about equal to the total distortion.

Bleed mass flow— The components of the total bleed of figure 8 are shown in figure 10. The bleed flow through each zone is plotted as a function of total-pressure recovery at the engine face. Most of the variation in supercritical bleed flow results from the change in the throat bleed (zones 3 and 4), although near maximum recovery changes also occur in the flow through bleed zone 2. The plenum-chamber pressure recoveries associated with these bleed flow are shown in figure 11. These recoveries together with the bleed mass flow are necessary to assess the drag penalties associated with the boundary-layer removal system. The higher bleed pressure recoveries (zones 3 and 4) occur when the bleed flow rates are highest and are caused by higher internal duct pressure. This is fortunate because higher pressure recoveries reduce the size of the bleed exit ducting required as well as provide a potential for lower bleed exit momentum drag coefficient.

Static-pressure distributions— Theoretical and experimental static-pressure distributions on the cowl and centerbody are shown in figure 12(a). This figure shows the distributions for the most upstream location of the terminal shock wave (x/R = 4.10 - 4.20) that can be achieved without unstarting the inlet. Subsonic flow occurs downstream of the point where the static-pressure rise (p/p_{∞}) is about 40. Only partial agreement was obtained between the theoretical and experimental pressure distributions. The locations of the shock-wave impingement are in good agreement if allowance is made for the fact that the experimental results were obtained with the cowl lip translated 0.025 x/R forward of the theoretical design position. Even so, the experimentally measured pressure rises across the impingement locations are higher than predicted with the computer program. The combination of the difference in impingement location and the effect of the boundary-layer displacement thickness could partially explain the discrepancy. The measured pressure rise of 3.03 across the second impingement point on the centerbody includes the rise through the terminal shock wave. Figures 12(b) and 12(c) show the experimental pressure distributions as the terminal shock wave is withdrawn progressively downstream.

Flow profiles— The effectiveness of the boundary-layer removal system in controlling the boundary-layer growth is shown by figure 13. Pitot-pressure profiles upstream of, between, and downstream of each porous bleed area are shown in addition to a profile across the inlet throat. Near the inlet throat $(x/R \cong 4.20)$ boundary-layer height was the same (h/R = 0.020) on both cowl and centerbody. On the cowl side of the flow passage, profiles upstream and downstream of the throat bleed (x/R = 4.18 and 4.38) show that the boundary layer is well controlled. However, on the centerbody side, near the same axial location, the thickness of the low pitot-pressure region adjacent to the wall increased. This increase occurred over the relatively short distance x/R = 4.200

to 4.225 and was believed to be caused by a rapid turning of the flow in this region (about 12°). This phenomenon could represent either an increase in boundary-layer thickness or a local reacceleration of the flow.

Attitude sensitivity with fixed geometry— The previous discussion has considered only the steady-state performance at 0° angle of attack. Also of importance is the sensitivity of the inlet to sudden changes in the approaching flow conditions such as might be caused by gusts. A gust could suddenly change the local angle of attack by 2° to 3° before the inlet could respond with a change in geometry. Figure 14 shows the inlet tolerance to changes in angle of attack. In this figure the total-pressure recovery at 0° angle of attack has been plotted for three contraction ratios (positions of the cowl lip). The indicated angles (α_{uns}) represent the limiting angle of attack, at various points along the supercritical operating curves (starting from 0°), to which the model can be pitched, with no geometry change, without unstarting the inlet. As an example, with the inlet operating at $(x/R)_{lip}$ = 2.840 and maximum pressure recovery, the angle of attack can be changed only to 0.3° without unstarting the inlet. If the pressure recovery is reduced by moving the terminal shock wave downstream, the angle of attack to which the inlet can be pitched without unstarting increases to 2° and does not change as the shock wave is moved farther downstream. Decreasing the contraction ratio (increasing $(x/R)_{lip}$) increased the tolerance to changes in angle of attack. It should be noted that the data were acquired with a system capable only of slowly changing the angle of attack so that a sudden gust was not simulated.

Performance at $M_{\infty} = 3.50$ With Bypass

Supercritical performance— For steady state, on design operation, a matched inlet-engine combination probably will require little or no bypass airflow. However, the bypass system can serve to stabilize the position of the terminal shock wave when transient disturbances are encountered, assist in restarting the inlet in the event of an unstart, or permit establishment of stable inlet flow in the event of serious engine malfunction. The effect of the bypass on the principle performance parameters as a function of mass flow at the engine face is shown in figure 15. Each curve shown corresponds to a fixed bypass exit opening. Small quantities of bypass mass flow have little effect on maximum pressure recovery while the larger quantities tend to reduce the maximum pressure recovery. The distortion remains low (about 5 percent) near the maximum pressure recovery for each bypass exit setting. Figure 16 shows the same principle performance parameters as figure 15 plotted as a function of bleed mass-flow ratio. Subtracting the sum of the mass-flow ratios of figures 15 and 16 from the mass-flow ratio of 1.000 entering the inlet gives the bypass mass-flow ratio.

Penalties— In order to assess the drag penalties associated with the bypass system, the pressure recovery in the bypass plenum chamber must be known as well as the quantity of bypass mass flow. Figure 17 shows the bypass plenum-chamber pressure recovery as a function of bleed mass-flow ratio. Bleed mass-flow ratio is used as a parameter because the data can be plotted conveniently with an expanded scale compared to that required if mass flow at the engine face were used. Comparison of the bypass plenum-chamber pressure (fig. 17) with the total-pressure recoveries at the engine face (fig. 16) shows that the total-pressure loss of the bypass air in flowing from the main duct through the perforated walls to the bypass plenum chamber increases with increasing bypass mass flow. This is an unfavorable effect because reduced pressure recovery tends to reduce the available momentum of the bypass air and increases bypass drag coefficient.

Effect on distortion— At or near maximum pressure recovery, the total distortion parameter does not change as the bypass mass flow increases. However, the shape of the total-pressure profiles at the engine face does change. Figure 18 shows the total-pressure recovery profiles at the engine face for two typical rakes on opposite sides of the duct (see figure in table 2). A profile is presented for each of the maximum pressure recovery points shown in figure 15. Bypass mass-flow ratios of 0.02 or greater tend to improve the pressure recovery on the cowl side of the flow passage but at the expense of the pressure recovery on the centerbody side. The distortion is almost totally radial except for the case of maximum bypass where the distortion is mainly circumferential. The following paragraph gives a possible explanation for the increase in pressure recovery on the cowl side of the flow passage when the bypass is open.

Figure 19 shows the effect of bypass mass flow on the surface static-pressure distributions. Along the upstream portion of the bypass area (x/R = 5.025 to 5.175) on the cowl, the static pressure generally decreases as the bypass mass flow increases, while downstream of this location small amounts of bypass mass flow (up to about 6 percent) increase the surface static pressure. This indicates that flow separation may be occurring near x/R = 5.175 and is probably being eliminated by small amounts of bypass. On the centerbody no evidence of flow separation was found so, as might be expected, increasing bypass decreased the static pressure. The apparent separation point on the cowl coincides with a relatively rapid change in local surface slope and could be reduced or eliminated by recontouring the cowl surface.

Angle of attack— Figure 20 shows the maximum pressure recovery and associated bleed mass-flow ratio and distortion as a function of bypass mass-flow ratio at angles of attack of 0°, 2°, 5°, and 8°. These data are important because of the question of whether or not a system that performs well at small angles of attack will operate satisfactorily at larger angles. Data at 0° angle of attack were obtained with a number of fixed bypass exit areas, and the data at 2°, 5°, and 8° were obtained with no bypass and with two other bypass exit areas. Flags indicate bypass exit openings maintained at all angles of attack. Increasing angle of attack decreased bypass mass flow because internal duct pressure was reduced. The largest bypass opening was sufficient to divert all the main duct flow through the bypass at angles of attack of 0° and 2° (half-filled symbols). At any given angle of attack, changes in bypass mass flow have only small effects on the maximum pressure recovery, bleed mass-flow ratio, and distortion. However, changes in angle of attack result in large changes in these quantities. The cause of these changes will be discussed in the following paragraph.

Inlet-engine matching—Figure 21 shows the supercritical performance of the inlet at angle of attack with zero bypass and with a fixed bypass exit opening. Data with bypass are included because the normal mode of operation at 0° angle of attack may require a small amount of bypass. All data were obtained at contraction ratios slightly less than that which would cause inlet unstart. For reference, a constant corrected weight flow line has been added. Maintaining a started inlet at angle of attack requires a reduction in the inlet contraction ratio (cowl translation) which increases spillage flow and distortion and decreases internal duct pressure and bleed mass flow. The reduced contraction ratio and correspondingly higher terminal shock Mach number with a more nonuniform profile partially account for the reduced pressure recovery and increased distortion. These effects result in a change in engine face corrected weight flow. In the usual operation the bypass flow must be adjusted to satisfy the engine demand. At 2° angle of attack the engine requirements can be met without additional bypass. At 5° angle of attack, about 10-percent bypass is required, and at 8°, about 30 percent. However, at 8° the distortion may be unacceptably high.

Off-Design Supersonic Performance

Data for Mach numbers from 3.25 to 1.55 are presented in a form identical to that for Mach number 3.5. No analysis of these data (figs. 22 to 37) will be made since the trends and analysis presented for the data at Mach number 3.5 will, in general, be sufficient for understanding the off-design data. Table 4 indicates the type of data contained in these figures.

Maximum Pressure Recovery Performance at Supersonic Speeds

Figures 38 and 39 show maximum pressure recovery data obtained throughout the supersonic Mach number range. Included with the maximum pressure recoveries are the associated distortions and bleed mass flows without bypass at angles of attack up to 8°, and with bypass at 0° angle of attack.

Figures 38(a) to (c) show the maximum performance throughout the supersonic Mach number range for three bleed levels and no bypass. In general, at 0° angle of attack, maximum pressure recovery increases with decreasing Mach number. At Mach number 2.25 the pressure recovery is somewhat lower, possibly because of the change in bleed. This is particularly evident on the curves for bleed exit setting A where the bleed at Mach number 2.25 is considerably less than that at the next higher Mach number. The curves for bleed exit settings B and C show smaller reductions in pressure recovery and correspondingly smaller reductions in bleed mass flow. The reason for the low pressure recovery at Mach number 2.0 is not fully understood, but may be due to the relative misalinement of the cowl and centerbody bleed surfaces. At Mach number 1.75 pressure recovery improves more than 5 percent and coincides with the Mach number where the inlet becomes self-starting (no cowl translation required to ingest the terminal shock system). The distortion is below about 10 percent over the entire Mach number range.

For 2° angle of attack, similar trends were observed. For angles of attack of 5° and 8°, substantial decreases in pressure recovery and increases in distortion occur. As might be expected, the losses in performance with increasing angle of attack are less severe at the lower Mach numbers.

Figures 39(a) to (c) show the maximum performance as a function of bypass mass-flow ratio for three bleed levels. The half-filled symbols indicate that all the inlet flow has been diverted through the bypass. Only small decreases in pressure recovery occur over relatively large ranges of bypass mass flow. Distortion remains acceptably low over the entire range of bypass mass flow. Data that show an increase in pressure recovery with small amounts of bypass are probably the result of control of local flow separation on the cowl. In these cases, further increasing bypass mass flow reduces pressure recovery, which is caused by losses on the centerbody side of the flow passage (see fig. 34).

Unstarted Inlet Performance

Figure 40 shows, at 0° angle of attack, the cowl lip position that caused the inlet to unstart and the position that allows the inlet to restart (see fig. 7 for relationship between cowl translation and contraction ratio). A cowl translation distance of about 0.65 x/R is required to achieve inlet restart at Mach number 3.5, and this value decreases until, at Mach number 1.75 and below, the

inlet is self-starting; that is, no cowl translation is required to restart. Figure 41 shows the effect of unstarting the inlet on the principle performance parameters. The circles represent maximum values of pressure recovery and related values of distortion and bleed mass-flow ratio prior to unstart. The half-filled circles represent these quantities after the inlet unstarts. The pressure recovery and distortion during unstarted operation are subject to wide variation because of the unsteadiness of the flow. The generally low level of pressure recovery and high level of distortion indicate the low quality of the flow at the engine face during unstarted operation of the inlet. Figures 42 and 43 indicate the changes that occur in the individual bleed flows and plenum-chamber pressure recoveries when the inlet unstarts. These quantities aid in the assessment of the attendant drag penalties.

Transonic Performance

The performance in the Mach number range up to 1.3 is treated separately because additive drag is a major portion of the presentation, and bleed and bypass mass-flow measurements were not made. Data were obtained with the bleed exits both open and closed but the bypass was closed for all testing.

Figure 44 shows the data obtained up to Mach number 1.3 with the bleed exits open. Achievement of high pressure recovery and low distortion requires some increase in additive drag over the minimum value as well as some reduction in the inlet mass-flow capability. The results obtained with the bleed exits open and closed are compared in figure 45. The conditions for relatively large mass flows show little change in pressure recovery. However, at reduced mass-flow conditions, pressure recovery decreases when the bleed exits are closed. The distortion may be unacceptably high, particularly at the higher Mach numbers, for the conditions at high mass flow.

Data obtained at angles of attack up to 8° and Mach numbers up to 1.0 are shown in figure 46. The data shown are for the intermediate cowl lip position, $(x/R)_{lip} = 4.030$ and with the bleed exits both open and closed. Because of flow asymmetry it was believed that inlet mass-flow measurements at angle of attack would be unreliable and no attempt was made to make these measurements. Therefore, since the inlet geometry was the same at all angles of attack, the data are based on the assumption that the capture mass flow was the same as at 0° . With the exception of 8° angle of attack, the data obtained with the bleed exits open show a continuing increase in pressure recovery with a decrease in mass flow. With the bleed exits closed pressure recovery increases and then decreases as the mass flow is decreased. As was the case at 0° , the distortion at angle of attack may be unacceptably high for conditions of high mass flow.

CONCLUDING REMARKS

A 20-inch capture diameter model of a mixed-compression axisymmetric inlet system designed for a Mach number of 3.5 has been tested. Some of the main conclusions to be drawn from the results are as follows.

The total-pressure recovery measured in the supersonic diffuser was somewhat below theoretical predictions partially, at least, because the oblique shock waves were stronger than

predicted. In addition, in the vicinity of the throat (x/R = 4.200 to 4.225), a rapid increase in the thickness of the region of low pitot pressure occurred on the centerbody surface. This increase corresponded to an area of rapid change in centerbody surface slope (12° turning between x/R = 4.200 and 4.225). It is believed that a more uniform throat pitot-pressure profile could be obtained by reducing the rate of turning of the centerbody surface.

At the engine face with zero bypass mass flow, relatively low levels of total-pressure recovery were obtained on the cowl side of the flow passage. With small amounts of bypass mass flow the pressure recovery on the cowl side generally increased and that on the centerbody generally decreased. The increase in pressure recovery on the cowl side was believed to be due to the effect of the bypass in reducing local flow separation on the cowl in the vicinity of the engine face. Flow separation was thought to be caused by an excessive rate of change in local surface slope in the region of the bypass. The overall effect of increasing bypass mass flow (at a fixed-bleed mass flow) was a general reduction in average total-pressure recovery with little or no change in the average total-pressure distortion.

Control of the boundary layer was accomplished with four porous bleed areas. The boundary layer in the supersonic diffuser was controlled by bleeding just upstream of two internal shock-wave impingement locations. Bleed in the throat region resulted in increased bleed mass flow and total-pressure recovery at the engine face as the terminal shock moved upstream in the throat region. Altering the throat bleed exits and hence the throat bleed back pressures varied the characteristic performance curves of bleed versus pressure recovery. Attempts to vary performance by increasing the back pressure of the bleeds in the supersonic diffuser resulted in the inability to achieve an inlet contraction ratio sufficient for high performance. At the design Mach number of 3.5 the total bleed flow rates appeared to be large, but compared with the trend of the total bleed flow rates of the inlets designed for lower Mach numbers, they may not be excessive. At off-design Mach numbers, the total bleed flow rates appeared to be excessive compared to those of the inlets designed for lower Mach numbers. A large portion of the off-design bleed flow was removed through the forward cowl bleed which, at the design Mach number, was just upstream of the shock-wave impingement. For off-design operation this bleed area moved well into the subsonic diffuser, where the pressures were relatively high; consequently, more bleed flow was removed from the cowl surface than was necessary for good performance. If the forward cowl bleed were relocated downstream of the shock-wave impingement location at the design condition, where the pressures are somewhat higher, the expanse of the porous area could perhaps be reduced. This would result in about the same amount of bleed at the design Mach number, but should reduce off-design bleed.

Over the useful supercritical range and at low angles of attack, vortex generators, just downstream of the throat on both cowl and centerbody surfaces, appeared to be effective in maintaining low total-pressure distortion at the engine face over the entire Mach number range. However, because the Mach number of the engine face was low at the higher free-stream Mach numbers (about 0.15 at M_{∞} = 3.5), low distortion may be easier to achieve than would be the case for inlets designed for higher engine face Mach numbers.

If, at 0° angle of attack, the inlet was operated supercritically and at slightly less than the contraction ratio for best performance, the inlet remained started with changes in angle of attack of up to 2°. Such operation reduced the maximum pressure recovery about 1 to 3 percent without changing distortion.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, July 14, 1970

REFERENCES

- Sorensen, Norman E.; and Smeltzer, Donald B.: Investigation of a Large-Scale Mixed-Compression Axisymmetric Inlet System Capable of High Performance at Mach Numbers 0.6 to 3.0. NASA TM X-1507, 1968.
- 2. Smeltzer, Donald B.; and Sorensen, Norman E.: Investigation of a Nearly Isentropic Mixed-Compression Axisymmetric Inlet System at Mach Numbers 0.6 to 3.2. NASA TN D-4557, 1968.
- 3. Cubbison, Robert W.; Meleason, Edward T.; and Johnson, David F.: Effect of Porous Bleed in a High Performance Axisymmetric, Mixed-Compression Inlet at Mach 2.5. NASA TM X-1692, 1968.
- 4. Sorensen, Norman E.; Smeltzer, Donald B.; and Cubbison, Robert W.: Study of a Family of Supersonic Inlet Systems. AIAA paper 68-580; J. Aircraft, vol. 6, no. 3, May-June 1969, pp. 184-188.
- 5. Sorensen, Virginia L.: Computer Program for Calculating Flow Fields in Supersonic Inlets. NASA TN D-2897, 1965.
- 6. Kuehn, Donald M.: Experimental Investigation of the Pressure Rise Required for the Incipient Separation of Turbulent Boundary Layers in Two-Dimensional Supersonic Flow. NASA MEMO 1-21-59A, 1959.
- 7. McLafferty, G.: Pressure Losses and Flow Coefficients of Slanted Perforations Discharging From Within a Simulated Supersonic Inlet. UAC Res. Dept. R-0920-1, 1958.
- 8. Taylor, H. D.: Summary Report on Vortex Generators. UAC Res. Dept. R-05280-9, 1950.
- 9. Sibulkin, Mervin: Theoretical and Experimental Investigation of Additive Drag. NACA Rep. 1187, 1954.

Table 1.- INLET COORDINATES

CENTERBODY

X R	R
0	0
Straight	taper
1.636	.288
1.800	.318
2.000	.356
2.200	.395
2.400	.436
2.600	•479
2.800	.524
3.000	.570
3.200	.618
3.400	.667
3.600	.718
3.700	.744
3.800	.771
3.825	.777
3.850	.783
3.875	.788
3.900	.793
3.925	•797
3.950	.801
3.975	.804
4.000	.807
4.025	.809
1+.050	.811

R	r R
4.075	.813
4.100	814
4.125	.815
4.150	.815
4.180	.8155
4.200	.815
4.220	.814
4.225	.813
Straigh	t taper
4.395	.776
4.450	.764
4.550	•739
4.650	.713
4.750	.686
4.850	.657
4.950	.624
5.050	.591
5.150	•555
5.250	•51 7
5.350	.475
5.450	.436
5.550	.408
5.600	.402
5.650	.400
Straigh	t line

COMT

$\left(\frac{x}{R}\right)_{C}$	r R
0	1.000
Straight	line
• 350	1.000
.450	•999
•550	•996
.650	•992
.7 50	.985
.850	•977
•950	.966
1.050	•953
1.150	.938
1.1 7 5	•933
Straigh	t taper
1.535	.870
1.650	.849
1.750	.830
1.850	.812
1.950	.794
2.050	.777
2.150	.762
2.250	·749
2.300	.745
2.350	.742
2.400	.742
2.450	.746
2.550	•773
2.650	.809
2.700	.819
2.750	.824
2.79	.825 -

Engine-face rakes

Straight line

Table 2.- SUPERSONIC ENGINE FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞}

The following include total-pressure recoveries from the individual tubes mounted at the engine face. Other performance parameters are also included. The sketch below shows the location of each tube.

Engine-face pressure tube location looking downstream

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$	=3	.50	_ α =		0.00	m _o .	$/m_{\infty} =$	1.	000	:	m _{bp} /m _{co}	= 0.	06
₹	₂ /p _{t_∞} =	0.79	<u>4</u> m _b	$_{1}/m_{\infty}$ =	0.134	_ △	p _{t2} = -	0.06	1		p_2/p_{∞}	, = 59	.3
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE	NO.	5	6
1	îi	ì	i i		i · i	ĥ		0.798		• • •	i		
3 5	R	1	í i		i i	0.801	1	0.811					
•	0.811	• •			·	·							
M_{∞}	=	3.50	<u>α</u> =		0.0	m _O /	/m _∞ =	1	•000		m _{bp} /m _c	_∞ = _0	.23
$\overline{p}_{t_{\mathcal{Z}}}$	$p_{t_{\infty}} =$	0.85	9 mb	$_1/m_\infty =$	0.16	<u>2</u> Δ ₁	ot2 = -	0.0	52		p _z /p	on =	65.0
RAKE NO.	1 0.854	2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE	NO.	5	6
I	0.841	ī -i	i i		1 1	i :	1	H			ł		
1	0.842	1	i i		î i	ì		0.842		1			
	=		· · - ^		Fr. 10 10 10 10 100 100 100 100 100 100 10			4	h	l		1	<u></u> -
							/ -∞ ,		500		шрЪ \ ш	∞ = <u>∪.</u>	21
\overline{p}_{t_2}	₂ /p _{t_∞} =										_		
RAKE	_/p _{t_∞} =	0.83	<u>2</u> m _b :	1/m _∞ =	0.14	<u>0</u> Δ ₁	Ptp = -	0.0	055		. p ₂ /p,	_∞ =	
RAKE NO.	p _t _∞ =	0.83	2 m _b ; TUBE	$1/m_{\infty} = 1$ NO.	0.14	0 Δ ₁	RAKE	0.0	2	TUBE	p ₂ /p,	 =	62.7
RAKE NO.	p _t _∞ =	0.83	2 mb	$\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ 0.811	0.140 5 0.828	0 Δ ₁ 6 0.833	RAKE NO.	0.0	2 0.833	TUBE 30.824	p ₂ /p ₀ NO. 4 0.828	5 0.838	62.7
RAKE NO.	$p_{t_{\infty}} = \frac{1}{0.849}$	0.83 0.847 0.815	TUBE 3 0.832 0.818	$1/m_{\infty} = \frac{1}{1/m_{\infty}}$ NO. 4 0.811 0.816	0.14 5 0.828 0.816	0 Δ ₁ 6 0.833 0.819	RAKE NO. 2	0.0 1 0.838	2 0.833 0.850	TUBE 3_0.824	p ₂ /p ₂ NO. 4 0.828 0.837	5 0.838 0.846	62.7 6 0.848 0.857
RAKE NO.	pt _w = 1 0.849 0.823 0.815	0.83 0.847 0.815 0.826	TUBE 3 0.832 0.818 0.836	$_{1}/m_{\infty} = \frac{NO.}{4}$ 0.811 0.816 0.830	0.140 5 0.828 0.816 0.830	0 Δ ₁ 6 0.833 0.819 0.839	RAKE NO. 2 4	0.838 0.842 0.831	2 0.833 0.850 0.841	TUBE 3 0.824 0.837 0.834	P ₂ /P ₀ NO. 4 0.828 0.837 0.826	5 0.838 0.846 0.826	62.7 6 0.848 0.857 0.830
RAKE NO.	$p_{t_{\infty}} = \frac{1}{0.849}$	0.83 0.847 0.815 0.826	TUBE 3 0.832 0.818 0.836	$_{1}/m_{\infty} = \frac{NO.}{4}$ 0.811 0.816 0.830	0.140 5 0.828 0.816 0.830	0 Δ ₁ 6 0.833 0.819 0.839	RAKE NO. 2 4	0.838 0.842 0.831	2 0.833 0.850 0.841	TUBE 3 0.824 0.837 0.834	P ₂ /P ₀ NO. 4 0.828 0.837 0.826	5 0.838 0.846 0.826	62.7 6 0.848 0.857 0.830
RAKE NO. 1 3 5	pt _w = 1 0.849 0.823 0.815	0.83 0.847 0.815 0.826	2 mb TUBE 3 0.832 0.818 0.836 α =	$1/m_{\infty} = \frac{1}{4}$ NO. 4 0.811 0.816 0.830	0.140 5 0.828 0.816 0.830	0.833 0.819 0.839	RAKE NO. 2 4 6	0.838 0.838 0.842	2 0.833 0.850 0.841	TUBE 3_ 0.824 0.837 0.834	P ₂ /P ₀ NO. 4 0.828 0.837 0.826	5 0.838 0.846 0.826	62.7 6 0.848 0.857 0.830
RAKE NO. 1 3 5	p _t _∞ = 1 0.849 0.823 0.815	0.83 0.847 0.815 0.826	2 mb TUBE 3 0.832 0.818 0.836 α =	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14 0.811 0.816 0.830	0.140 5 0.828 0.816 0.830	0.833 0.819 0.839	RAKE NO. 2 4 6	0.838 0.838 0.842	2 0.833 0.850 0.841	TUBE 3_ 0.824 0.837 0.834	NO. 4 0.828 0.837 0.826 m _{bp} /m	5 0.838 0.846 0.826	62.7 6 0.848 0.857 0.830
RAKE NO. 1 3 5 M_{∞} =	p _t _∞ = 1 0.849 0.823 0.815	0.83 0.847 0.815 0.826	2 m _b TUBE 3 0.832 0.818 0.836 α =	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14 0.811 0.816 0.830	0.140 5 0.828 0.816 0.830	0.833 0.819 0.839	RAKE NO. 2 4 6 /m_\infty = -	0.838 0.838 0.842	2 0.833 0.850 0.841	TUBE 3 0.824 0.837 0.834	NO. 4 0.828 0.837 0.826 m _{bp} /m	5 0.838 0.846 0.826	62.7 6 0.848 0.857 0.830
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE	1 0.849 0.823 0.815 - 3	0.83 0.847 0.815 0.826 0.826	2 m _b TUBE 3 0.832 0.818 0.836 α = 20 m _b TUBE	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14 0.811 0.816 0.830 1/ $m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14	0.140 5 0.828 0.816 0.830 0.0° 0.152	0 Δ1 6 0.833 0.819 0.839	RAKE NO. 2 4 6 /mo = Pt2 = RAKE NO.	0.838 0.842 0.831	0.833 0.850 0.841 1.000	TUBE 3 0.824 0.837 0.834 TUBE	P ₂ /P ₀ NO. 4 0.828 0.837 0.826 m _{bp} /m P ₂ /P NO.	5 0.838 0.846 0.826 $\infty =$	62.7 6 0.848 0.857 0.830 0.85 62.8
RAKE NO. 1 3 5 Ft2 RAKE NO.	1 0.849 0.823 0.815 3 2/Pt_w=	0.83 0.847 0.815 0.826 0.826 0.814	2 mb TUBE 3 0.832 0.818 0.836 \[\alpha = \frac{20}{3} \] \[\text{TUBE} \] 3 0.819	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14 0.811 0.816 0.830 1/m_{\infty} = \frac{1}{m_{\infty}} NO. 14	0.140 5 0.828 0.816 0.830 0.0° 0.152	0 Δ1 6 0.833 0.819 0.839 mo Δ	RAKE NO. 2 4 6 Pt2 = Pt2 = RAKE NO. 2	0.838 0.842 0.831 0.05	0.833 0.850 0.841 1.000 56	TUBE 3 0.824 0.837 0.834 TUBE 3	P ₂ /P ₀ NO. 4 0.828 0.837 0.826 m _{bp} /m p ₂ /p NO. 1 ₁ 0.815	5 0.838 0.846 0.826 $\infty =$ $\infty =$	62.7 6 0.848 0.857 0.830 0.85 62.8

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_z}/p_{t_∞} - Continued Bleed exit setting B

M _∞ =	:	3.50	_ α =		5.0°	^m o	$/m_{\infty} =$			1	m _{bp} /m∞	= 0.0)2
₽t2	/p _t , =	0.68	<u>89</u> mb	$_{\rm l}/{\rm m}_{\infty}=$	0.150	<u>)</u> Δ	p _{t2} = _	0.14	13		p_2/p_{∞}	, =5	52.7
RAKE		** .	TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.701	0.714	0.721	0.716	0.727	0.721	2	0.672	0.685	0.709	0.734	0.746	0.715
3	0.650	0.654	0.672	0.684	0.702	0.702	4	0.648	0.652	0.671	0.681	0.682	0.681
5	0.648	0.647	0.655	0.669	0.684	0.685	6	0.655	0.663	0.686	0.711	0.733	0.713
M _∞ :	=	3.50	_ α =	:	5.0°	m _O	$/m_{\infty} =$				m _{bp} /m _s	_∞ = _0.	.72
								0.1					
RAKE			TUBE	NO.			RAKE	1	••	TUBE	NO.		
NO.	1	5	3	4	5	6	NO.]	2	Г З	4	5	6
l	0.662	0.675	0.690	0.688	0.705	0.714	2	0.632	0.634	0.638	0.645	0.656	0.666
3	0.639	0.636	0.639	0.640	0.644	0.644	4	0.638	0.637	0.639	0.636	0.641	0.652
5	0.638	0.636	0.638	0.634	0.634	0.630	6	0.633	0.631	0.633	0.642	0.653	0.660
			•										
$M_{\infty} =$	3	.50	α =	: {	3.0°	m _O	$/m_{\infty} =$				m _{bp} /m	∞ =	0
													38.1
₽ _{t₂}	/p _t =	0.50	5 m _b	$_1/m_\infty =$	0.094		Pt2 = . *	Ο,	.446		p ₂ /p	∞ = -	38.1
P̄ _{t₂}	/p _t =	0.50	5 m _b	$_1/m_\infty =$	0.094		Pt2 = . *	0.	.446		p ₂ /p	∞ = -	38.1
RAKE	/p _{t∞} =	2	5 ^m b TUBE	$1/m_{\infty} = \frac{1}{1}$ NO.	0.094		Pt ₂ = . RAKE NO.	Ο,	2	TUBE	p ₂ /p ₃	∞ =	38.1
Pta RAKE NO.	/p _t _∞ =	2 0.625	TUBE	$1/m_{\infty} = 0.646$	0.094 5 0.634	6 0.557	Pt ₂ = RAKE	0.	2 0.452	TUBE 3 0.480	p ₂ /p ₁ NO. 4 0.536	5 0.560	38.1 6 0.510
RAKE NO.	/p _{t_∞} =	2 0.625 0.436	TUBE 3 0.657	$1/m_{\infty} = \frac{1}{1}$ NO.	0.094 5 0.634 0.504	6 0.557 0.489	P _{t2} = . RAKE NO. 2	0.450	2 0.452 0.449	TUBE 3 0.480 0.475	p ₂ /p ₃ NO. 4 0.536 0.503	5 0.560 0.502	38.1 6 0.510 0.473
RAKE NO.	/p _{t_∞} = 1	2 0.625 0.436 0.443	TUBE 3 0.657 0.458 0.473	$1/m_{\infty} = 1/m_{\infty} = 1/m_{\infty}$ NO. 1_{1} 0.646 0.495 0.508	0.094 5 0.634 0.504 0.521	6 0.557 0.489 0.490	Pt ₂ = RAKE NO.	0.450 0.434 0.451	2 0.452 0.459 0.453	TUBE 3 0.480 0.475 0.484	p ₂ /p ₃ NO. 4 0.536 0.503 0.543	5 0.560 0.502 0.559	38.1 6 0.510 0.473 0.506
\overline{p}_{t_2} RAKE NO. 1 3 5	/p _{t_∞} = 1 0.559 0.432 0.434	2 0.625 0.436 0.443	TUBE 3 0.657 0.458 0.473 $\alpha = 0.473$	$1/m_{\infty} = 1/m_{\infty} = 1/m_{\infty}$ NO. 14 0.646 0.495	0.094 5 0.634 0.504 0.521 8.0°	6 0.557 0.489 0.490	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.450 0.434 0.451	2 0.452 0.449 0.453	TUBE 3 0.480 0.475 0.484	p ₂ /p ₂ /p ₃ NO. 4 0.536 0.503 0.543 m _{bp} /m	5 0.560 0.502 0.559 $\infty = 0$	38.1 6 0.510 0.473 0.506
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$	/p _{t_∞} = 1 0.559 0.432 0.434	2 0.625 0.436 0.443	TUBE $\begin{bmatrix} 3 \\ 0.657 \\ 0.458 \\ 0.473 \end{bmatrix}$ $\alpha = \frac{m_b}{2}$	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.094 5 0.634 0.504 0.521 8.0°	6 0.557 0.489 0.490	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = m_{t_2} = m_{t_2}	0.450 0.434 0.451	2 0.452 0.449 0.453	TUBE 3 0.480 0.475 0.484	p ₂ /p ₂ /	5 0.560 0.502 0.559 $\infty = 0$	38.1 6 0.510 0.473 0.506
\overline{p}_{t_2} RAKE NO. 1 3 5	/p _{t_∞} = 1 0.559 0.432 0.434	2 0.625 0.436 0.443 3.50 0.507	TUBE 3 0.657 0.458 0.473 α = 7 TUBE	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.094 5 0.634 0.504 0.521 8.0°	6 0.557 0.489 0.490	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.450 0.434 0.451	2 0.452 0.449 0.453	TUBE 3 0.480 0.475 0.484	P ₂ /P ₂ /	5 0.560 0.502 0.559 $\infty = 0$	38.1 6 0.510 0.473 0.506
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO.	/p _t _∞ = 1 1 0.559 0.432 0.434 = 2 2 2 1 1 1 1 1 1 1	2 0.625 0.436 0.443 3.50 0.503	TUBE 3 0.657 0.458 0.473 α = 7	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.094 5 0.634 0.504 0.521 8.0°	6 0.557 0.489 0.490 mo	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO.	0.450 0.434 0.451	2 0.452 0.449 0.453	TUBE 3 0.480 0.475 0.484 TUBE	p ₂ /p ₂ /p ₂ /p ₂ /p ₃ NO. 4 0.536 0.543 m _{bp} /m p ₂ /p ₃	5 0.560 0.502 0.559 $\infty = 0$	38.1 6 0.510 0.473 0.506 0.01 39.4
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO. 1	p _t = 1	2 0.625 0.436 0.443 3.50 0.507 2 0.617	TUBE 3 0.657 0.458 0.473 ~ mt TUBE 3 0.650	$1/m_{\infty} = \frac{1}{1}$ NO. $\frac{1}{4}$ 0.646 0.508 NO. $\frac{1}{4}$ 0.644	0.094 5 0.634 0.504 0.521 8.0° 0.09	6 0.557 0.489 0.490 m _o 98 \(\triangle \)	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2	0.450 0.434 0.451 0.451	2 0.452 0.453 0.453	TUBE 3 0.480 0.475 0.484 TUBE 3 0.481	P ₂ /P ₂ /NO. 14 0.536 0.503 0.543 m _{bp} /m P ₂ /F NO. 14	5 0.560 0.502 0.559 \odots =	38.1 6 0.510 0.473 0.506 0.01 39.4 6 0.517
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO. 1 3	p _t = 1 0.557 0.435 1 0.557 0.435	2 0.625 0.436 0.443 3.50 0.503 2 0.617 0.440	TUBE 3 0.657 0.458 0.473 α = 7 TUBE 3 0.650 0.461	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.094 5 0.634 0.504 0.521 8.0° 0.09	6 0.557 0.489 0.490 	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2 4	0.450 0.434 0.451 0.451	2 0.452 0.459 0.453 425 2 0.453 0.448	TUBE 3 0.480 0.475 0.484 TUBE 3 0.481 0.473	p ₂ /p ₂ /p ₂ /p ₂ /p ₂ /p ₃ 0.536 0.503 0.543 m _{bp} /m p ₂ /p ₃	5 0.560 0.502 0.559 $\infty = 0$	38.1 6 0.510 0.473 0.506 0.01 39.4

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t_2}/p_{\rm t_\infty}$ - Continued Bleed exit setting B

_{1,1} ∞ _	=3.	50	_ α =	= 8.	0°	m _C	$_{0}/m_{\infty} =$				m _{bp} /m _o	o =(0.36
₱t;	₂ /p _t , =	0.46	66 m	bl/m∞ =	- 0.094	Δ	\p _{t2} =	0.51	.1		p ₂ /p _c	∞ = <u> </u>	41.0
RAKE			TUBE	E NO.			RAKE			TUBI	E NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4_	5] 6 J
1	0,520	1	1	0.635	ì	1	\$f	H	1	1	i	1	0.518
3	0.412	0.412	0.417	0.427	0.443	0.464	S)	il .		1			0.477
5								0.408	0.409	0.419	0.442	0.483	[0.523]
${\rm M}_{\infty}$	=	3.25	α =	=0	.0°	m _O	$/m_{\infty} =$	0.	965		$m_{\rm bp}/m$	_∞ = _0)
₱t₂	$p_{t_{\infty}} =$	0.86	8 m _b	$_{1}/m_{\infty} =$	0.174		Pt2 = .	0.	094		p ₂ /p	_∞ = <u>44</u>	.6
RAKE			TUBE	NO.			RAKE			TUBE	E NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
1	H		i	!	[!	1	11	ſ	1	i	1	0.866
3	0.850	ł	l .	1	1		H	0.852	ľ	i .	I	Į.	i
5								li .	1	1	Υ	1	0.850
M _∞ =	3	. 25	_ α =	0.0	00	m _O	$/m_{\infty} =$	0.9	965		m _{bp} /m	∞ =	0
P _t ;	₂ /p _{t∞} =	0.85	<u>о</u> т	$_1/m_\infty$ =	0.16	1	p _{t2} = -	0.0	082		p ₂ /p	_∞ = _4	4.2
P _t ;												_,	
												_,	
RAKE	1	2	TUBE	NO.	5	6	RAKE NO.	0.0	2	TUBE	NO.	5	6
RAKE NC.	1 0.823	2	TUBE 3 0.832	NO.	5 0.854	6 0.870	RAKE NO.	1	2.0.854	TUBE 3 0.864	NO.	5	6
RAKE NO.	1 0.823 0.851	2 0.823 0.879	TUBE 3 0.832 0.868	NO. 4 0.881	5 0.854 0.870	6 0.870 0.839	RAKE NO. 2	1 0.831 0.847	2 0.854 0.874	TUBE 3 0.864 0.869	NO. 4	5 0.874 0.870	6
RAKE NC. 1 3 5	1 0.823 0.851	2 0.923 0.879 0.826	TUBF 3 0.832 0.868 0.842	NO. 4 0.881 0.851	5 0.854 0.870 0.875	6 0.870 0.839 0.860	RAKE NO. 2 4	1 0.831 0.847 0.858	2 0.854 0.874 0.878	TUBE 3 0.864 0.869 0.875	NO. 4 0.878 0.886 0.890	5 0.874 0.870 0.860	6 0.837 0.835 0.836
RAKE NC. 1 3 5	1 0.823 0.851 0.826	2 0.823 0.879 0.826	TUBE 3 0.832 0.868 0.842 α =	NO. 4 0.881 0.851	5 0.854 0.870 0.875	6 0.870 0.839 0.860	RAKE NO. 2 4 6	1 0.831 0.847 0.858	2 0.854 0.874 0.878	TUBE 3 0.864 0.869 0.875	0.878 0.886 0.890	5 0.874 0.870 0.860	0.837 0.835 0.836
RAKE NC. 1 3 5 M _{\infty} = \$\bar{p}_{t_2}\$ RAKE	1 0.823 0.851 0.826	2 0.823 0.879 0.826	TUBE 3 0.832 0.868 0.842 α =	NO. 4 0.881 0.851 0. 3/m _{\infty} =	5 0.854 0.870 0.875	6 0.870 0.839 0.860	RAKE NO. 2 4 6 $m_{\infty} = 1$ $p_{t_2} = 1$	0.831 0.847 0.858 0.96	2 0.854 0.874 0.878	TUBE 3 0.864 0.869 0.875	0.878 0.886 0.890 m _{bp} /m _c	0.874 0.870 0.860 0.860	0.837 0.835 0.836
RAKE NC. 1 3 5 M _{\infty} = \$\bar{p}_{t_2}\$	1 0.823 0.851 0.826	2 0.823 0.879 0.826	TUBE 3 0.832 0.868 0.842 α =	NO. 4 0.881 0.851 0. 3/m _{\infty} =	5 0.854 0.870 0.875	6 0.870 0.839 0.860	RAKE NO. 2 4 6	0.831 0.847 0.858 0.96	2 0.854 0.874 0.878	TUBE 3 0.864 0.869 0.875	0.878 0.886 0.890 m _{bp} /m _c	0.874 0.870 0.860 0.860	0.837 0.835 0.836
RAKE NC. 1 3 5 M _{\infty} = \$\bar{p}_{t_2}\$ RAKE	1 0.823 0.851 0.826 3.	2 0.823 0.879 0.826 25 0.81	TUBE 3 0.832 0.868 0.842 \[\alpha = \] 8 \[\text{mb} \] TUBE	NO. $\frac{1}{4}$ 0.881 0.851 0.	5 0.854 0.870 0.875 0° 0.148	6 0.870 0.839 0.860 m _o /	RAKE NO. 2 4 6 /m _∞ =	0.831 0.847 0.858 0.96 0.07	2 0.854 0.874 0.878	TUBE 3 0.864 0.869 0.875 TUBE	NO. 4 0.878 0.886 0.890 mbp/mo p ₂ /p	$\begin{bmatrix} 5 \\ 0.874 \\ 0.870 \\ 0.860 \\ \infty = _(0.860) \\ 0.860 \\$	0.837 0.835 0.836
RAKE NC. 1 3 5 M _{\infty} = \$\bar{P}_{t_2}\$ RAKE NO.	1 0.823 0.851 0.826 3. /pt_m=	2 0.823 0.879 0.826 25 0.81	TUBE 3 0.832 0.868 0.842 α = 8 m _b TUBE 3 0.818	NO. 14 0.881 0.851 0 1 / 1 / 1 / 1 0.	5 0.854 0.870 0.875 0° 0.148	6 0.870 0.839 0.860 mo/	RAKE NO. 2 4 6	1 0.831 0.847 0.858 0.96	2 0.854 0.874 0.878 55 5	TUBE 3 0.864 0.869 0.875 TUBE 3 0.818	NO. 4 0.878 0.886 0.890 m _{bp} /m _c p ₂ /p NO. 4	$ \begin{array}{c} 5 \\ 0.874 \\ 0.870 \\ 0.860 \\ \infty = \underline{} \\ \infty = \underline{} \\ 0.822 \end{array} $	6 0.837 0.835 0.836 0.836

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPFRSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

M _∞ =	3.25	α =	0.0°	т	$_{\rm O}/{\rm m}_{\infty} =$	0.9	965		m _{bp} /m _o	o =	0.20
$\bar{p}_{t_2}/p_{t_\infty}$	0.83	7 m _{bl} /	$m_{\infty} = 0.16$	64 4	Δp _{t2} =	0.	.087		p ₂ /p _c	_∞ =	43.6
1 0.81 3 0.81	6 0.815	0.820	0. 4 5 0.823 837 0.849 825 0.837	0.836	2	0.816	0.823	0.842	0.854	0.852	$\begin{bmatrix} 0.867 \\ 0.874 \end{bmatrix}$
M _∞ =	3.25	α = _	0.0°	m_{C}	$m_{\infty} =$		0.965		$m_{\rm bp}/m$	∞ = <u> </u>	0.19
$\bar{p}_{\mathrm{t}_{\mathrm{F}}}/\mathrm{p}_{\mathrm{t}_{\infty}}$	= 0.813	3 m _{bl} /r	$a_{\infty} = 0.15$	<u>4</u> \triangle	p _{t2} =	0	.085		p ₂ /p	_∞ =	42.5
3 0.79	1 0.793 0 0.806	0.796 0.828 0.	0. 4 5 0.803 824 0.830 808 0.812	0.820	2	0.787 0.787	0.797 0.796	0.814	0.823	0.830 0.830	0.841
M _{co} =	3.25	α =	0.00	m _C	$_{\rm o}/{\rm m}_{\infty} =$	0	965		m_{bp}/m_{e}	_∞ =	0.42
$\bar{p}_{t_2}/p_{t_\infty}$	= 0.83	$8 m_{bl}/m$	$a_{\infty} = 0.17$	<u>2</u> \triangle	p _{t2} = .	0.08	7		p ₂ /p _c	x =	43.6
1 0.82; 3 0.82;	2 0.821 1 0.823	0.827 0.829 0.	0. 4 5 0.823 839 0.855 828 0.833	0.819	2 . 4	0.821 0.821	0.827 0.821	0.841	0.846 0.851	0.858 0.863	0.865
M _∞ =	3.25	α =	0.00	m _O ,	$/m_{\infty} = .$	0.9	165		$m_{\rm bp}/m_{\rm c}$	× =(0.42
$\bar{p}_{t_2}/p_{t_\infty}$	- 0.822	m _{bl} /n	$a_{\infty} = \underline{0.158}$	Δ	p _{t2} = _	0.	094		p ₂ /p ₀	_∞ =	43.0
RAKE NO. 1		TUBE NO	. 5	6	RAKE NO.	1	2	TUBE.	NO.	5	6
3 0.803	0.808		0.812 831 0.838 812 0.833	0.846	4	0.802	0.810	0.826	0.829 0.831 0.846	0.837	0.851

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$	3.	00	_ α =		0.00	m _O	$/m_{\infty} = 1$	0.9	26		m _{bp} /m∞	=0	
$ar{p}_{ ext{t}_2}$	$/p_{t_{\infty}} =$	0.888	3 m _b	$_1/m_\infty$ =	0.170	<u> </u>	p _{t2} =_	0.085			p ₂ /p _x	$=\frac{31.}{}$	5
RAKE	[,		TUBE	NO.			RAKE]		TUBE	NO.		
NO.	1	2	3.	4	_ 5	6	NO.	1	2	3	4	5	6
1	0.881	0.902	0.912		0.887	0.863	2	0.900	0.901	0.921	0.900	0.883	0.855
:	0.891		ļ i			L		1					
5	0.885	0.895	0.918	0.900	0.879	0.852	6	0.897	0.910	0.925	0.899	0.873	0.851
M _∞ =	_ 3.0	0	_ α =	:	0.0°	_ m _O ,	$m_{\infty} = 1$	0.9	26		m _{bp} /m _c	_∞ = _0	
₽ _{t2}	$/p_{t_{\infty}} =$	0.87	L mb	$_{\rm l}/{\rm m}_{\infty}$ =	0.161		p _{t2} =	0.09	2		p ₂ /p ₀	_ = _ 30	.8
RAKE			TUBE	NO.			RAKE	Ī		TUBE	NO.		
NO.	_l 0.873	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.873	0.883	0.903		0.862	0.840	2	0.883	0.883	0.909	0.883	0.866	0.835
3	0.876	0.883	0.898	0.878	0.847	0.831	4	0.875	0.885	0.895	0.874	0.848	0.830
	0.867												
	3.							•	•			1	
\bar{p}_{t_2}	$/p_{t_{\infty}} =$	0.850) m _b	$_{\rm l}/{\rm m}_{\infty}$ =	0.150		p _{t2} = _		14		p ₂ /p ₆		
	1				0.150	-		0.10					
RAKE			TUBE	NO.		i	RAKE	0.10		TTIBE	NO.	_∞ = <u>2</u>	9.7
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	0.10	2	TUBE	NO.	_∞ =2	6
RAKE NO.	1 0.867	2	TUBE 3 0.892	NO.	5 0.835	6 0.812	RAKE NO. 2	0.10	2	TUBE 3 0.882	NO. 4	5 0.833	9.7 6 0.807
RAKE NO.	1 0.867	2 0.866 0.863	TUBE 3 0.892	NO. 4 0.851	5 0.835 0.817	6 0.812 0.803	RAKE NO. 2	0.10 1 0.872 0.872	2 0.869 0.868	TUBE 3 0.882 0.873	NO. 4 0.854 0.848	5 0.833 0.823	6 0.807 0.803
RAKE NO.	1 0.867 0.870	2 0.866 0.863 0.867	TUBE 3 0.892 0.871 0.889	NO. 4 0.851 0.856	5 0.835 0.817 0.828	6 0.812 0.803 0.805	RAKE NO. 2 4 6	0.10 1 0.872 0.872 0.871	2 0.869 0.868 0.873	TUBE 3 0.882 0.873 0.882	NO. 4 0.854 0.848 0.857	$_{\infty} = _{2}$ $_{0.833}$ $_{0.823}$ $_{0.825}$	6 0.807 0.803 0.805
RAKE NO. 1 3 5 M _∞ =	1 0.867 0.870 0.867	2 0.866 0.863 0.867	TUBE 3 0.892 0.871 0.889 α =	NO. 4 0.851 0.856	5 0.835 0.817 0.828	6 0.812 0.803 0.805	RAKE NO. 2 4 6	0.10 1 0.872 0.872 0.871	2 0.869 0.868 0.873	TUBE 3 0.882 0.873 0.882	NO. 4 0.854 0.848 0.857	$_{\infty} = _{2}$ $_{0.833}$ $_{0.823}$ $_{0.825}$	6 0.807 0.803 0.805
RAKE NO. 1 3 5 M _∞ =	1 0.867 0.870	2 0.866 0.863 0.867	TUBE 3 0.892 0.871 0.889 α =	NO. 4 0.851 0.856	5 0.835 0.817 0.828	6 0.812 0.803 0.805	RAKE NO. 2 4 6	0.10 1 0.872 0.872 0.871	2 0.869 0.868 0.873	TUBE 3 0.882 0.873 0.882	NO. 4 0.854 0.848 0.857	$ \begin{array}{c} $	6 0.807 0.803 0.805
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t2}$ RAKE	1 0.867 0.870 0.867	2 0.866 0.863 0.867	TUBE 3 0.892 0.871 0.889 α =	NO. 4 0.851 0.856 0 1/m _∞ =	5 0.835 0.817 0.828	6 0.812 0.803 0.805	RAKE NO. 2 4 6 $m_{\infty} =$ $p_{t_2} =$ RAKE	0.10 1 0.872 0.872 0.871	2 0.869 0.868 0.873	TUBE 3 0.882 0.873 0.882	NO. 0.854 0.848 0.857 m _{bp} /m	$ \begin{array}{c} $	6 0.807 0.803 0.805
RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	1 0.867 0.870 0.867	2 0.866 0.863 0.867	TUBE 3 0.892 0.871 0.889 \[\alpha = \frac{\text{m}}{\text{b}} \]	NO. 4 0.851 0.856 0 1/m _∞ =	5 0.835 0.817 0.828	6 0.812 0.803 0.805	RAKE NO. 2 4 6 $/m_{\infty} =$ $p_{t,2} =$	0.10 1 0.872 0.872 0.871	2 0.869 0.868 0.873	TUBE 3 0.882 0.873 0.882	NO. 0.854 0.848 0.857 m _{bp} /m	$ \begin{array}{c} $	6 0.807 0.803 0.805
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t2}$ RAKE	1 0.867 0.870 0.867 3. /Pt _∞ =	2 0.866 0.863 0.867 00 0.891	TUBE 3 0.892 0.871 0.889 α =	NO. $\frac{1}{4}$ 0.851 0.856 $\frac{0}{1^{/m_{\infty}}} = \frac{1}{NO}$	5 0.835 0.817 0.828 0.0° 0.172	6 0.812 0.803 0.805	RAKE NO. 2 4 6 $m_{\infty} =$ $p_{t_2} =$ RAKE	0.10 1 0.872 0.872 0.871 0.9	2 0.869 0.868 0.873 26 81	TUBE 3 0.882 0.873 0.882 TUBE	NO. 4 0.854 0.848 0.857 m _{bp} /m p ₂ /p NO.	$ \begin{array}{c} $	6 0.807 0.803 0.805 04
RAKE NO. $\begin{bmatrix} 1 & 3 & 5 \\ M_{\infty} & = & \bar{p}_{t_2} \\ RAKE & NO. \end{bmatrix}$	1 0.867 0.870 0.867 3. /p _t =	2 0.866 0.863 0.867 00 0.891 2	TUBE 3 0.892 0.871 0.889 α = TUBE 3 0.901	NO. $\frac{1}{4}$ 0.851 0.856 $\frac{0}{1^{/m_{\infty}}} = \frac{1}{NO}$	5 0.835 0.817 0.828 0.0° 0.172	6 0.812 0.803 0.805	RAKE NO. 2 4 6 $m_{\infty} = p_{t_2} = RAKE$ NO. 2	0.10 1 0.872 0.872 0.871 0.9 0.0	2 0.869 0.868 0.873 26 81 2	TUBE 3 0.882 0.873 0.882 TUBE 3 0.899	NO. 4 0.854 0.857 m _{bp} /m p ₂ /p NO. 4 0.910	$ \begin{array}{c} $	6 0.807 0.803 0.805 04

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE FRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

											n _{bp} /m∞		
P _{t2}	/p _t , -	0.864	m _b	1/m _∞ =	0.16	<u>9</u>	Pt2 =-	0.085			p ₂ /p _∞	=	32.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.] 1	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.843	0.847	0.854	-	0.896	0.911	2	0.842	0.844	0.853	0.858	0.877	0.901
3	0.840	0.849	0.864	0.870	0.889	0.895	4	0.841	0.844	0.853	0.871	0.890	0.901
5	0.841	0.843	0.851	0.855	0.866	0.886	6	0.840	0.842	0.853	0.873	0.896	0.909
M _∞ :	= 3.	00	α =	. 0	.0°	m _O	$/m_{\infty} = $	0.	926		m _{bp} /m _o	o = <u>0.4</u>	44 —
\overline{p}_{t_2}	$/p_{t_{\infty}} =$	0.854	m _b	$_{\rm l}/{\rm m}_{\infty} =$	0.162	Δ	p _{t2} = -	0.0	95		p ₂ /p ₀	o = <u>31</u>	1.9
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1_	5	3	4	5	6	NO.	1	2	3	4	5	6
1	0.830	0.838	0.854		0.887	0.904	2	0.831	0.832	0.835	0.851	0.871	0.890
3	0.829	0.833	0.844	0.851	0.877	0.884	14	0.830	0.836	0.852	0.867	0.891	0.902
5	0.827	0.830	0.835	0.834	0.847	0.868	6	0.827	0.832	0.843	0.857	0.888	0.903
M _∞ =	=3	.00	_ α =	:	0.0°	m _C	$m_{\infty} =$	0.92	6		m _{bp} /m _c	_∞ = 0.4	40
											m _{bp} /m _c		
P _t	p _{t∞} =	0.81	.4 m _b	$_1/m_\infty$ =	0.147	Δ	p _{t2} =	0.09	4		p ₂ /p ₀	_∞ = 30	0.4
P _t	p _{t∞} =	0.81	.4 m _b	$_1/m_\infty$ =	0.147	Δ	p _{t2} =	0.09	4		p ₂ /p ₀	_∞ = 30	0.4
Pt;	p _{t∞} =	2	TUBE	$1/m_{\infty} = 0$ NO.	0.1 <u>47</u>		P _t = RAKE	0.09	2	TUBE		_∞ = 30	6
RAKE NO.	p _t _∞ =	2 0.793	TUBE 3 0.820	$1/m_{\infty} = 0$ NO.	0.1 <u>47</u> 5 0.856	6 0.854	Pt ₂ = RAKE NO.	0.09	2_0.794	TUBE 3 0.798	p_2/p_0	5 0.828	6
RAKE NO.	p _t _∞ =	2 0.793 0.791	TUBE 3 0.820 0.813	$_{1}/m_{\infty} = 0$ NO. $_{4}$ $_{0.831}$	0.1 <u>47</u> 5 0.856 0.843	6 0.854 0.846	Pt ₂ = RAKE NO.	0.09 1 0.783 0.781	2 0.794 0.784	TUBE 3 0.798 0.802	p ₂ /p ₀	5 0.828 0.836	6 0.842 0.848
RAKE NO.	Pt _w = 1 0.782 0.781 0.780	2 [0.793 [0.791]0.786	TUBE 3 0.820 0.813 0.801	$1/m_{\infty} = 0.831$	0.147 5 0.856 0.843 0.841	6 0.854 0.846 0.844	Pt ₂ = RAKE NO. 2 4	0.09 1 0.783 0.781 0.781	2 0.794 0.784 0.789	TUBE 3 0.798 0.802 0.794	P ₂ /P ₀ NO. 4 0.808 0.824 0.819	5 0.828 0.836 0.855	6 0.842 0.848 0.853
RAKE NO.	pt _w = 1	2 [0.793 [0.791]0.786	TUBE 3 0.820 0.813 0.801 α =	$1/m_{\infty} = 0.831$	0.147 5 0.856 0.843 0.841 0.0°	6 0.854 0.846 0.844	$p_{t_2} =$ RAKE NO. 2 4 6	0.09 1 0.783 0.781 0.781	2 0.794 0.784 0.789	TUBE 3 0.798 0.802 0.794	p ₂ /p ₀ NO. 4 0.808 0.824 0.819 m _{bp} /m	5 0.828 0.836 0.855	6 0.842 0.848 0.853
RAKE NO.	pt _w = 1	2 0.793 0.791 0.786	TUBE 3 0.820 0.813 0.801 α = 3 m ₁	$1/m_{\infty} = 0.831$	0.147 5 0.856 0.843 0.841 0.0°	6 0.854 0.846 0.844	$p_{t_2} =$ RAKE NO. 2 4 6	0.09 1 0.783 0.781 0.781	2 0.794 0.784 0.789	TUBE 3 0.798 0.802 0.794	p ₂ /p ₀ NO. 4 0.808 0.824 0.819 m _{bp} /m	$ \begin{array}{ccc} $	6 0.842 0.848 0.853
Pt ₂ RAKE NO. 1 3 5 M _∞ =	pt _w = 1	2 0.793 0.791 0.786	TUBE 3 0.820 0.813 0.801 α = 3 m ₁	$1/m_{\infty} = 0.00$ NO. $1/m_{\infty} = 0.00$ $1/m_{\infty} = 0.00$	0.147 5 0.856 0.843 0.841 0.0°	6 0.854 0.846 0.844	$p_{t_2} =$ RAKE NO. 2 4 6 $/m_{\infty} =$	0.09 1 0.783 0.781 0.781	2 0.794 0.784 0.789	TUBE 3 0.798 0.802 0.794	p_{2}/p_{0} NO. 0.808 0.824 0.819 m_{bp}/m_{0}	$ \begin{array}{ccc} $	6 0.842 0.848 0.853
Pt ₂ RAKE NO. 1 3 5 M _∞ = Pt ₂ RAKE	pt _w = 1 1 0.782 0.781 0.780 3.	2 0.793 0.791 0.786 00 0.833	TUBE 3 0.820 0.813 0.801 α = 3 mt TUBE	$1/m_{\infty} = 0.00$ NO. $1/m_{\infty} = 0.00$	0.147 5 0.856 0.843 0.841 0.0° - 0.16	6 0.854 0.846 0.844 m _C	$p_{t_2} =$ RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO.	0.09 1 0.783 0.781 0.781 0.9	2 0.794 0.784 0.789 26 071	TUBE 3 0.798 0.802 0.794	p ₂ /p ₀ NO. 14 0.808 0.824 0.819 m _{bp} /m p ₂ /p	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 0.842 0.848 0.853 .76 0.8
RAKE NO. RAKE NO. The part of the second s	ptw = 1	2 0.793 0.791 0.786 00 0.833	TUBE 3 0.820 0.813 0.801 α = 3 TUBE 3 0.832	$1/m_{\infty} = 0.00$ NO. $1/m_{\infty} = 0.831$ $1/m_{\infty} = 0.813$ $1/m_{\infty} = 0.813$ NO. $1/m_{\infty} = 0.00$	0.147 5 0.856 0.843 0.841 0.0° - 0.16	6 0.854 0.844 0.844 0.844	$P_{t_{2}} =$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} =$ $P_{t_{2}} =$ $RAKE$ $NO.$ 2	0.09 1 0.783 0.781 0.781 0.9 1 0.826	2 0.794 0.784 0.789 26 071	TUBE 3 0.798 0.802 0.794 TUBE 3 0.827	p ₂ /p ₀ NO. NO. 0.808 0.824 0.819 m _{bp} /m p ₂ /p	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 0.842 0.848 0.853 .76 0.8
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO.	ptw = 1	2 0.793 0.791 0.786 00 0.833 2 0.828 0.829	TUBE 3 0.820 0.813 0.801 α = 3 mt TUBE 3 0.832 0.832	$1/m_{\infty} = 0.00$ NO. $1/m_{\infty} = 0.00$	0.147 5 0.856 0.843 0.841 0.0°	6 0.854 0.846 0.844 mc 1 \(\triangle \triangl	$p_{t_2} =$ RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO. 2 4	0.09 1 0.783 0.781 0.781 0.9 0. 1 0.826 0.828	2 0.794 0.784 0.789 26 071 2 0.826 0.828	TUBE 3 0.798 0.802 0.794 TUBE 3 0.827 0.829	p ₂ /p ₀ NO. 4 0.808 0.824 0.819 m _{bp} /m p ₂ /p NO. 1 0.830	$ \begin{array}{cccc} $	6 0.842 0.848 0.853 .76 0.8 6 0.845 0.862

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

								0.1			-	=0	
	1					ŗ	RAKE	<u> </u>		TUBE	NO.		
NO.	l 1	2	3	NO.	5	6	NO.	1	2		4	5	6
1	0.735	0.753	0.776		0.807	0.817	2	0.698	0.701	0.714	0.732	0.753	0.776
3	0.686	0.686	0.698	0.706	0.714	0.726	4	0.685	0.690	0.701	0.717	0.734	0.752
5	0.682	0.686	0.694	0.703	0.718	0.726	6	0.694	0.702	0.716	0.730	0.751	0.773
M _∞ =	= 3.	.00	_ α =	5	5.0°	m _O	/m _∞ = _				m _{bp} /m _c	_∞ = _0.	56
₽t2	$/p_{t_{\infty}} =$	0.669	9 m _b	$_1/m_{\infty} =$	0.124	<u>+</u>	pt2 = -	0.2	:18		p ₂ /p ₀	_∞ =2	7.0
RAKE			TUBE	NO.		:	RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.685	0.710	0.737		0.770	0.788	2	0.645					
1	H	ŧ	1	0.647	ŧ	ł .		0.650	0.647	0.650	0.658	0.663	0.674
5	0.645	0.646	0.648	0.643	0.645	0.648	6	0.642	0.648	0.654	0.670	0.687	0.691
					•		4	ц					
	3.0	•	_ α =	•	8.0°	•					m _{bp} /m	_∞ =	0
M _∞ =		00		:		m _O	/m _∞ =	0.46					
M _∞ =	/p _{t_∞} =	0.568	m _b	1/m _∞ =	0.116	m _o	/m _∞ =	0.46	56		. p ₂ /p	∞ = <u>2</u>	20.5
M _∞ =	/p _{t_∞} =	0.568	m _b	1/m _∞ =	0.116	m _o	/m _∞ =	0.46	56		. p ₂ /p	∞ = <u>2</u>	20.5
M _∞ = \bar{p}_{t_2} RAKE NO.	p _{t∞} =	0.568	^m d TUBE [3	$_{1}/m_{\infty} =$ $_{1}$ $_{1}$ $_{1}$ $_{1}$	0.1 <u>16</u>	m _o	$/m_{\infty} =$ $p_{t_{P}} =$ RAKE NO.		2	TUBE	P ₂ /P ₀	_∞ =2	6
M _∞ = \bar{p}_{t_2} RAKE NO.	/p _t _∞ =	0.568 2 0.721		$_{1}/m_{\infty} =$ $_{1}$ NO.	0.1 <u>16</u> 5 0.694	m ₀ Δ	$/m_{\infty} =$ $p_{t_{P}} =$ $RAKE$ NO .	0.46	2	TUBE 3	P ₂ /P ₀ NO4 0.584	_∞ =2 5 0.587	6
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	p _t _∞ =	0.568 2 0.721 0.498	TUBE 3 0.755 0.519	$_{1}/m_{\infty} =$ NO. $_{1}$	0.116 5 0.694 0.551	6 0.621 0.528	$m_{\infty} = $ $p_{t_{P}} = $ $m_{0} = $ m_{0}	0.46	2 0.529 0.515	TUBE 3 0.555	P ₂ /P ₀ NO. 4 0.584 0.571	$_{\infty} = _{2}$ $_{0.587}$ $_{0.553}$	6 0.546 0.523
M _∞ = \$\bar{p}_{tz}\$ RAKE NO. 1 3 5	p _t _∞ = 1 0.665 0.490 0.493	0.568 2 0.721 0.498 0.510	TUBE 3 0.755 0.519 0.538	$1/m_{\infty} = 0.546$	0.116 5 0.694 0.551 0.582	6 0.621 0.528 0.541	$m_{\infty} = 1$ $p_{t_{P}} = 1$	0.46 1 0.545 0.493 0.551	2 0.529 0.515	TUBE 3 0.555 0.555	p ₂ /p ₃ NO. 4 0.584 0.571 0.601	$_{\infty} = _{2}$ $_{0.587}$ $_{0.553}$	6 0.546 0.523 0.536
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	p _t _∞ = 1 0.665 0.490 0.493	0.568 2 0.721 0.498 0.510	TUBE 3 0.755 0.519 0.538 α =	$1/m_{\infty} = 1$ NO. $\frac{1}{4}$ 0.546 0.576	0.116 5 0.694 0.551 0.582	6 0.621 0.528 0.541	$/m_{\infty} =$ $p_{t_{P}} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$	0.46 1 0.545 0.493 0.551	0.529 0.515 0.530	TUBE 3 0.555 0.555	P ₂ /P ₂ NO. 4 0.584 0.571 0.601 m _{bp} /m	$ \begin{array}{c} $	6 0.546 0.523 0.536
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	1 0.665 0.490 0.493 3 2 /p _t , =	0.568 2 0.721 0.498 0.510	TUBE 3 0.755 0.519 0.538 α =	$1/m_{\infty} = 1$ NO. $\frac{1}{4}$ 0.546 0.576	0.116 5 0.694 0.551 0.582	6 0.621 0.528 0.541	$/m_{\infty} =$ $p_{t_{P}} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$	0.46 1 0.545 0.493 0.551	0.529 0.515 0.530	TUBE 3 0.555 0.555	p ₂ /p ₀ NO. 4 0.584 0.571 0.601 m _{bp} /m		6 0.546 0.523 0.536
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	1 0.665 0.490 0.493 3 2 /p _t , =	0.568 2 0.721 0.498 0.510	TUBE 3 0.755 0.519 0.538 α =	$1/m_{\infty} = 0.546$ 0.546 0.576 0.546	0.116 5 0.694 0.551 0.582	6 0.621 0.528 0.541	$/m_{\infty} =$ $p_{t_{2}} =$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} =$ $p_{t_{2}} =$	0.46 1 0.545 0.493 0.551	0.529 0.515 0.530	TUBE 3 0.555 0.555 0.557	p ₂ /p ₀ NO. 4 0.584 0.571 0.601 m _{bp} /m		6 0.546 0.523 0.536
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{tz}$ RAKE	1 0.665 0.490 0.493 3 2 /p _t , =	0.568 2 0.721 0.498 0.510 0.584	TUBE 3 0.755 0.519 0.538 α = TUBE	$1/m_{\infty} =$ NO. 14 0.546 0.576 8 $1/m_{\infty} =$ NO. 4	0.116 5 0.694 0.551 0.582 .0° - 0.13	6 0.621 0.528 0.541	$m_{\infty} = 1$ $p_{t_{\beta}} = 1$	0.46 1 0.545 0.493 0.551	0.529 0.515 0.530	TUBE 3 0.555 0.555 0.557	p ₂ /p ₃ NO. 4 0.584 0.571 0.601 m _{bp} /m p ₂ /r NO.		6 0.546 0.523 0.536 0.4
M _∞ = \bar{p}_{t_2} RAKE NO. 1 3 5 M _∞ = \bar{p}_{t_2}	1 0.665 0.493 3 2 Pt. = 1 0.658	0.568 2 0.721 0.498 0.510 0.584 2 0.708	TUBE 3 0.755 0.519 0.538 α = TUBE 3 0.739	$1/m_{\infty} =$ NO. 14 0.546 0.576 8 $1/m_{\infty} =$ NO. 4	0.116 5 0.694 0.551 0.582 0° 0.13	mo 6 0.621 0.528 0.541 mo 7 6 0.702	$m_{\infty} = 1$ $p_{t_{P}} = 1$	0.46 1 0.545 0.493 0.551	0.529 0.515 0.530 375	TUBE 3 0.555 0.557 TUBE 3 0.547	p ₂ /p ₂ NO. 4 0.584 0.571 0.601 m _{bp} /m p ₂ /r NO. 4 0.563		6 0.546 0.523 0.536 .04

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE FRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$	2.	75	<u>α</u> =	0.	0 ⁰	m _o .	$/m_{\infty} = 1$	0.8	52		$m_{\mathrm{bp}}/m_{\infty}$	= _0.	26
₱ _{t2}	/p _t =	0.801	m _b	$_1/m_\infty =$	0.12	<u>3</u> Δ	p _{t2} = .	0.1	51		p_2/p_{∞}	= _20	.1
RAKE			TUBE	NO.			RAKE	1		TUBE	NO.		7
NO.	1	2	3	4	. 5	6	NO.	1	2	3	4	5	6
1	0.760	0.763	0.777		0.829	0.862	2	0.760	0.764	0.780	0.802	0.827	0.861
								0.763					
5	0.758	0.764	0.781	0.795	0.813	0.846	6	0.761	0.767	0.785	0.817	0.849	0.879
M _∞ =		75	_ α =	. 0	.0°	m _O ,	/m _∞ =	0.8	52		m _{bp} /m _c	_∞ = 0.	68
								0.0					
RAKE			TUBE	NO.			RAKE	1		TUBE	NO.		
NO.	1 _1 _	2	3	14	5	6	NO.	1	2	3	14	5	6
] 1]	0.825	0.826	0.829	- 	0.829	0.840	2	0.827	0.825	0.823	0.820	0.816	0.801
3	0.820	0.825	0.829	0.827	0.831	0.838	14	0.827	0.826	0.832	0.838	0.844	0.853
								0.821					
$M_{\infty} =$		75	_ α =	2.	0°	m _O	$/m_{\infty} = $. -		m _{bp} /m	_∞ =	
								0.14			-)
P̄t2	/p _t =	0.858	m _b	1/m _∞ =	0.160		p _{tp} = -	0.14	13		. p ₂ /p ₀)
P̄t2	/p _t =	0.858	m _b	1/m _∞ =	0.160		p _{tp} = -	0.14	13		. p ₂ /p ₀	_∞ =2)
P _{t2}	/p _t =	0.858 2	TUBE	$1/m_{\infty} = \frac{1}{1}$	0.160 5	Δ ₁	Pt ₂ = - RAKE NO.	0.14	2	TUBE	. p ₂ /p ₀	_∞ =2	6
RAKE NO.	/p _{t_w} =	0.858 2 0.855	TUBE 3 0.888	$1/m_{\infty} = \frac{1}{1}$	0.160 5 0.916		RAKE NO.	0.14	2 0.841	TUBE 3 0.874	P ₂ /P ₀ NO. 4 0.918	5 0.908	6 0.838
RAKE NO.	/p _{t_∞} =	0.858 2 0.855 0.814	TUBE 3 0.888	$1/m_{\infty} \approx \frac{1}{1/m_{\infty}}$ NO. 14 0.859	5 0.916 0.877	6 0.858 0.859	Pt ₂ = - RAKE NO. 2	0.14 l 0.821 0.810	2 0.841 0.823	TUBE 3 0.874 0.847	P ₂ /P ₀ NO. 4 0.918 0.880	5 0.908 0.892	6 0.838 0.857
RAKE NO.	$p_{t_{\infty}} =$ 0.837 0.803 0.807	0.858 2 0.855 0.814 0.824	TUBE 3 0.888 0.837 0.852	$1/m_{\infty} = \frac{NO.}{4}$ 0.859 0.867	0.160 5 0.916 0.877 0.880	6 0.858 0.859 0.853	RAKE NO.	0.14	2 0.841 0.823 0.856	TUBE 3 0.874 0.847 0.893	P ₂ /P ₀ NO. 4 0.918 0.880	= 2	6 0.838 0.857 0.826
$\begin{array}{c} \overline{p}_{t_2} \\ \text{RAKE NO.} \\ 1 \\ 3 \\ 5 \\ \end{array}$ $M_{\infty} =$	/p _t = 1 0.837 0.803 0.807	0.858 2 0.855 0.814 0.824	TUBE 3 0.888 0.837 0.852	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ 0.859 0.867	5 0.916 0.877 0.880	6 0.858 0.859 0.853	Pt₂ =	0.14 1 0.821 0.810 0.829	0.841 0.823 0.856	TUBE 3 0.874 0.847 0.893	NO. 14 0.918 0.880 0.926 m _{bp} /m	$ \begin{array}{c} 5 \\ 0.908 \\ 0.892 \\ 0.905 \end{array} $ $ \begin{array}{c} 0.905 \\ 0.905 \end{array} $	6 0.838 0.857 0.826
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	/p _t = 1 0.837 0.803 0.807	0.858 2 0.855 0.814 0.824	TUBE 3 0.888 0.837 0.852	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14 0.859 0.867 2. $1/m_{\infty} = \frac{1}{m_{\infty}}$	5 0.916 0.877 0.880	6 0.858 0.859 0.853	Pt₂ = RAKE NO. 2 4 6 /m∞ = Pt₂ = RAKE	0.14 1 0.821 0.810 0.829	0.841 0.823 0.856	TUBE 3 0.874 0.847 0.893	NO. 4 0.918 0.880 0.926 m _{bp} /m _c p ₂ /p	$ \begin{array}{c} 5 \\ 0.908 \\ 0.892 \\ 0.905 \end{array} $ $ \begin{array}{c} 0.905 \\ 0.905 \end{array} $	6 0.838 0.857 0.826
\bar{p}_{t_2} $RAKE NO.$ $1 3 5 $ $M_{\infty} = \bar{p}_{t_2}$	/p _t = 1 0.837 0.803 0.807	0.858 2 0.855 0.814 0.824	TUBE 3 0.888 0.837 0.852 α =	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14 0.859 0.867 2. $1/m_{\infty} = \frac{1}{m_{\infty}}$	5 0.916 0.877 0.880	6 0.858 0.859 0.853	RAKE NO. 2 4 6 6 /m_\infty = -	0.14 1 0.821 0.810 0.829	0.841 0.823 0.856	TUBE 3 0.874 0.847 0.893	NO. 4 0.918 0.880 0.926 m _{bp} /m _c p ₂ /p	$ \begin{array}{c} 5 \\ 0.908 \\ 0.892 \\ 0.905 \end{array} $ $ \begin{array}{c} 0.905 \\ 0.905 \end{array} $	6 0.838 0.857 0.826
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	/p _{t_∞} = 1 0.837 0.803 0.807 /p _{t_∞} =	0.858 0.855 0.814 0.824 .75 0.858	TUBE 3 0.888 0.837 0.852 α = TUBE	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14 0.859 0.867 2. $1/m_{\infty} = \frac{1}{m_{\infty}}$ NO.	5 0.916 0.877 0.880 0°	6 0.858 0.859 0.853	Pt₂ = RAKE NO. 2 4 6 /m∞ = RAKE NO.	0.14 1 0.821 0.810 0.829	0.841 0.823 0.856	TUBE 3 0.874 0.847 0.893 TUBE	P ₂ /P ₀ NO. 4 0.918 0.880 0.926 m _{bp} /m P ₂ /P NO. 4	$ \begin{array}{c} $	6 0.838 0.857 0.826
\bar{p}_{t_2} $RAKE \\ NO.$ $1 \\ 3 \\ 5$ $M_{\infty} = \bar{p}_{t_2}$ $RAKE \\ NO.$	/p _{t_∞} = 1 0.837 0.803 0.807 /p _{t_∞} =	0.858 0.855 0.814 0.824 75 0.858	TUBE 3 0.888 0.837 0.852 \[\alpha = \frac{m}{D} \] TUBE 3 0.880	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 14 0.859 0.867 2. $1/m_{\infty} = \frac{1}{m_{\infty}}$ NO.	0.160 5 0.916 0.877 0.880 0° 0.180 5 0.911	6 0.858 0.859 0.853	RAKE NO. 2 $/m_{\infty} =$ RAKE NO. 2 $/m_{\infty} =$ RAKE NO.	0.14 1 0.821 0.810 0.829 0.1	0.841 0.823 0.856 38 2 0.827	TUBE 3 0.874 0.847 0.893 TUBE 3 0.843	P ₂ /P ₀ NO. 4 0.918 0.880 0.926 m _{bp} /m ₀ P ₂ /p NO. 4 0.875		6 0.838 0.857 0.826 13

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$	2.	50	_ α =	0.	0°	m _o ,	$m_{\infty} = 1$	0.75	1.		m _{bp} /m∞	=0	
₱t2	/p _t =	0.908	m _b	$_1/m_\infty$ =	0.181	_	p _{t2} =-	0.09	3		p_2/p_{∞}	=	.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	NO.	5	6	NO.	1	2	3	4	5	6
ı ı	0.876	0.881	0.901	_	0.952	0.917	2	0.879	0.899	0.922	0.944	0.935	0.879
3	0.871	0.885	0.907	0.934	0.931	0.875	4	0.877	0.898	0.929	0.950	0.943	0.887
5	0.878	0.896	0.924	0.949	0.932	0.880	6	0.879	0.906	0.940	0.955	0.942	0.877
M _∞ :	= 2.	50	_ α =	0	.0°	m _O ,	/m _∞ = _	0.	751		$m_{\rm bp}/m_{\rm o}$	o =	0
₱ _{t2}	/p _t =	0.884	m _b	$_1/m_\infty$ =	0.164	Δ:	p _{t2} = -	0.12	9		p ₂ /p _c	× =	14.5
RAKE		•	TUBE	NO.	*	-	RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	14	5	6
1	0.842	0.851	0.882		0.936	0.873	2	0.840	0.859	0.893	0.932	0.915	0.856
3	0.840	0.863	0.889	0.921	0.916	0.856	14	0.849	0.876	0.921	0.948	0.912	0.849
5	0.850	0.877	0.918	0.941	0.891	0.834	6	0.843	0.869	0.915	0.939	0.917	0.835
					_								
M _∞ =		50	_ a =	0.	00	m _O	$/m_{\infty} =$	0.	751		m _{bp} /m _c	_∞ =0	
				$\frac{0}{1}/m_{\infty} =$									
₱t₂	/p _t =	0.85	57 m _b	$_1/m_\infty$ =	0.143	<u>3</u> Δ;	Pt2 = -	0.	145	····	. p ₂ /p ₀	_∞ = <u>1</u>	3.8
₱t₂	/p _t =	0.85	57 m _b	$_1/m_\infty$ =	0.143	<u>3</u> Δ;	Pt2 = -	0.	145	····	. p ₂ /p ₀	_∞ = <u>1</u>	3.8
P _t ;	/p _t =	0.85	57 ^m b TUBE 3		0.143 5	δ Δ	Pt ₂ = -	0.	145	TUBE	p ₂ /p ₀	» = <u>1</u>	3.8
Ptz	/p _{t_∞} =	0.85 2 0.861	7 ^m b TUBE 3 0.886	$1/m_{\infty} =$ NO. $\frac{1}{4}$	0.143 5 0.885	6 0.827	Pt ₂ = - RAKE NO.	0. 1 0.829	2	TUBE 3 0.917	P ₂ /P ₀ NO. 4 0.908	5 0.851	6 0.797
Pt; RAKE NO.	/p _{t_∞} =	2 0.861 0.855	TUBE 3 0.886 0.879	$\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$	0.143 5 0.885 0.856	6 0.827 0.803	Pts = - RAKE NO.	0. 1 0.829	2 0.879 0.865	TUBE 3 0.917 0.907	P ₂ /P ₀ NO. 4 0.908 0.907	5 0.851 0.863	6 0.797 0.808
RAKE NO.	/p _t = 1 0.829 0.821 0.825	0.85 0.861 0.855 0.868	TUBE 3 0.886 0.879 0.914	$1/m_{\infty} = 0.884$	0.143 5 0.885 0.856 0.845	6 0.827 0.803 0.793	RAKE NO.	0. 1 0.829 0.830 0.818	2 0.879 0.865 0.851	TUBE 3 0.917 0.907 0.892	P ₂ /P ₀ NO. 4 0.908 0.907	5 0.851 0.863 0.860	6 0.797 0.808 0.795
Pt ₂ RAKE NO. 1 3 5	/p _t = 1 0.829 0.821 0.825	2 0.861 0.855 0.868	TUBE 3 0.886 0.879 0.914	$1/m_{\infty} = 0.884$	0.143 5 0.885 0.856 0.845	6 0.827 0.803 0.793	RAKE NO. 2 $4 \qquad 6$	0. 1 0.829 0.830 0.818	2 0.879 0.865 0.851	TUBE 3 0.917 0.907 0.892	P ₂ /P ₀ NO. 4 0.908 0.907 0.900	5 0.851 0.863 0.860 $\infty = 0$	6 0.797 0.808 0.795
Pt ₂ RAKE NO. 1 3 5	/p _t = 1 0.829 0.821 0.825 2.	2 0.861 0.855 0.868	TUBE 3 0.886 0.879 0.914	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.143 5 0.885 0.856 0.845	6 0.827 0.803 0.793	RAKE NO. 2 $4 \qquad 6$	0. 1 0.829 0.830 0.818	145 2 0.879 0.865 0.851 751	TUBE 3 0.917 0.907 0.892	P ₂ /P ₀ NO. 4 0.908 0.907 0.900 m _{bp} /m p ₂ /p	5 0.851 0.863 0.860 $\infty = 0$	6 0.797 0.808 0.795
\overline{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	/p _t = 1 0.829 0.821 0.825 2.	2 0.861 0.855 0.868	TUBE 3 0.886 0.879 0.914 α = mt	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.143 5 0.885 0.856 0.845	6 0.827 0.803 0.793	RAKE NO. 2 4 6 $/m_{\infty} =$ $p_{t2} =$	0. 1 0.829 0.830 0.818	145 2 0.879 0.865 0.851 751	TUBE 3 0.917 0.907 0.892	P ₂ /P ₀ NO. 4 0.908 0.907 0.900 m _{bp} /m p ₂ /p	5 0.851 0.863 0.860 $\infty = 0$	6 0.797 0.808 0.795
\overline{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	/p _t = 1	2 0.861 0.855 0.868 .50 0.894	TUBE 3 0.886 0.879 0.914 α =	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.143 5 0.885 0.856 0.845 0	6 0.827 0.803 0.793	RAKE NO. 2	0. 1 0.829 0.830 0.818 0.	145 2 0.879 0.865 0.851 751 118	TUBE 3 0.917 0.907 0.892 TUBE	P ₂ /P ₀ NO. 4 0.908 0.907 0.900 m _{bp} /m ₀ p ₂ /p	$\infty = 1$ 5 0.851 0.863 0.860 $\infty = 0$	6 0.797 0.808 0.795 .05 15.1
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO.	/p _{t∞} = 1 0.829 0.821 0.825 2. /p _{t∞} =	2 0.861 0.855 0.868 .50 0.894	TUBE 3 0.886 0.879 0.914 α = TUBE 3 0.865	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.143 5 0.885 0.856 0.845 0 0.168	6 0.827 0.803 0.793 — — — — — — — — — — — — — — — — — — —	RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO. 2 2	0.829 0.830 0.818 0.	145 2 0.879 0.865 0.851 751 118 2 0.862	TUBE 3 0.917 0.907 0.892 TUBE 3 0.888	P ₂ /P ₀ NO. 4 0.908 0.907 0.900 m _{bp} /m P ₂ /P NO.	$\infty = 1$ 5 0.851 0.863 0.860 $\infty = 0$ $\infty = 0$ 0.921	3.8 6 0.797 0.808 0.795 .05 15.1 6 0.919

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} = 2.50$ $\alpha = 0.0^{\circ}$ $m_{O}/m_{\infty} =$	$m_{\rm bp}/m_{\infty} = 0.05$
$\bar{p}_{t_2}/p_{t_\infty} = 0.866$ $m_{bl}/m_\infty = 0.153$ $\Delta p_{t_2} = 0.153$	$p_2/p_{\infty} = 14.5$
RAKE TUBE NO. RAKE NO. NO. 1 2 3 4 5 6 NO. 1 0.810 0.827 0.844 0.897 0.898 2 3 0.819 0.834 0.855 0.866 0.882 0.891 4 5 0.812 0.831 0.864 0.890 0.916 0.910 6	0.813 0.829 0.862 0.901 0.922 0.906 0.819 0.839 0.874 0.908 0.922 0.910
$M_{\infty} = \frac{2.50}{\text{m}_{\odot}/\text{m}_{\infty}} = \frac{0.0^{\circ}}{\text{m}_{\odot}/\text{m}_{\infty}} = \frac{0.0^{\circ}}{\text{m}_{\odot}/m$	
$\bar{p}_{t_2}/p_{t_{\infty}} = 0.861$ $m_{bl}/m_{\infty} = 0.124$ $\Delta p_{t_2} =$	_
TAKE NO. TUBE NO. RAKE NO. NO. 1 2 3 4 5 6 NO. 1 0.809 0.835 0.860 0.869 0.866 2 3 0.802 0.825 0.858 0.873 0.870 0.869 4 5 0.816 0.857 0.903 0.923 0.906 0.876 6	0.808 0.839 0.878 0.910 0.896 0.877 0.822 0.853 0.885 0.896 0.873 0.847
$M_{\infty} = 2.50$ $\alpha = 0.0^{\circ}$ $m_{\odot}/m_{\infty} =$	0.751 $m_{bp}/m_{\infty} = 0.11$
$M_{\infty} = \underline{2.50} \qquad \alpha = \underline{0.0^{\circ}} \qquad m_{0}/m_{\infty} = \overline{p_{t_{2}}/p_{t_{\infty}}} = \underline{0.896} \qquad m_{b_{1}}/m_{\infty} = \underline{0.176} \qquad \Delta p_{t_{2}} = \underline{0.176}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\overline{p}_{t2}/p_{t_{\infty}} = 0.896$ $m_{b1}/m_{\infty} = 0.176$ $\Delta p_{t2} = 0.846$ $m_{b1}/m_{\infty} = 0.176$ $\Delta p_{t2} = 0.846$ $MO.$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\overline{p}_{t_2}/p_{t_{\infty}} = 0.896$ $m_{bl}/m_{\infty} = 0.176$ $\Delta p_{t_2} = \frac{\text{RAKE}}{\text{NO.}}$ $\frac{\text{TUBE NO.}}{1}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{4}$ $\frac{5}{5}$ $\frac{6}{6}$ $\frac{\text{NO.}}{1}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued Bleed exit setting B

$M_{\infty} =$	2.50	α =	0.	0°	m _O	$/m_{\infty} =$	0.7	51	1	$m_{\rm bp}/m_{\infty}$	= 0.	10
\overline{p}_{t_2}	$p_{t_{\infty}} = 0.8$	866 m _b	$_{ m l}/{ m m}_{\infty}=$	0.161	<u> </u>	p _{t2} =	0.1	57		p_2/p_{∞}	= 14	.7
RAKE NO.	1 2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE	NO.	5	6
1	0.812 0.8	I .		I		1	0.812	1				
1	0.822 0.8	1		1	1 1	1	0.820	1 1	1 1	·	1	
i	0.819 0.8	į į	i	i	i î	Î	ñ	i i	į į	i	i · ·1	
M _∞ :	= 2.50	α =	:	0.0°	m _O ,	$m_{\infty} =$	0.7	51		m _{bp} /m _c	_∞ = 0.	20
	$/p_{t_{\infty}} = 0.8$					-						
RAKE		TUBE	NO.			RAKE			TUBE	NO.		
NO.	1 2	3	4	5	6	NO.	1	2	3	14	5	6
1	0.8488	52 0.860	_	0.888	0.918	2	0.848	0.852	0.862	0.876	0.895	0.908
	0.853 0.8	Ť	i	i	i i	ā	Ħ	:	•	!	•	
5.	0.843 0.8	51 0.860	0.874	0.895	0.925	6	0.858	0.869	0.887	0.907	0.930	0.939
M _∞ =	2.50	α =	:	0.00	mo	/m =	0.7	51		m _b n/m	~ = O.	18
						/ - 00				υp,		10
\bar{p}_{t_2}	/p _t =0.85											
Pt₂ RAKE	p _t =0.89	50 m _b	$_{\rm l}/{\rm m}_{\infty}$ =	0 . 15 <u>7</u>		p _{t2} =	0.1	.78		p ₂ /p	_∞ = 14	.6
	p _t =0.85	50 m _b	$_{\rm l}/{\rm m}_{\infty}$ =	0 . 15 <u>7</u>		p _{t2} =	0.1	.78		p ₂ /p	_∞ = 14	.6
RAKE NO.	p _t =0.89	TUBE	$1/m_{\infty} = 1$	0.15 <u>7</u>	<u></u> 6	P _t =	0.1	.78	TUBE	P ₂ /P ₀	_∞ = 14	6
RAKE NO.	$p_{t_{\infty}} = 0.89$	TUBE 3 05 0.816	$1/m_{\infty} = 1$ NO.	0.15 <u>7</u> 5 0.861	6 0.902	Pt ₂ = RAKE NO.	0.1	.78 2 0.808	TUBE 3 0.821	p ₂ /p ₃ NO. 10.838	_∞ = 14	.6 6 0.908
RAKE NO.	$p_{t_{\infty}} = 0.89$	TUBE 3 0.816 37 0.847	$1/m_{\infty} = 1$ NO. $\frac{1}{4}$ 0.862	0.15 <u>7</u> 5 0.861 0.883	6 0.902 0.907	Pt ₂ = RAKE NO.	0.1 1 0.805 0.811	2 0.808 0.815	TUBE 3 0.821 0.841	P ₂ /P ₂ NO. 4 0.838 0.871	5 0.868 0.904	.6 6 0.908 0.933
RAKE NO.	$p_{t_{\infty}} = 0.89$	TUBE 3 0.816 37 0.847 13 0.834	$1/m_{\infty} = 1$ NO. $\frac{1}{4}$ 0.862 0.857	0.15 <u>7</u> 5 0.861 0.883 0.891	6 0.902 0.907 0.926	RAKE NO. 2 4	0.1 0.805 0.811 0.808	78 -2 0.808 0.815 0.818	TUBE 3 0.821 0.841 0.829	p ₂ /p ₃ NO. 4 0.838 0.871 0.855	5 0.868 0.904 0.896	.6 6 0.908 0.933 0.921
RAKE NO	$p_{t_{\infty}} = 0.89$ $0.804 \mid 0.80$ $0.805 \mid 0.8$	TUBE 3 0.816 37 0.847 13 0.834 $\alpha =$	$1/m_{\infty} = 1/m_{\infty} = 1/m_{\infty}$ NO. $1/m_{\infty} = 1/m_{\infty}$ 0.862 0.857	0.157 5 0.861 0.883 0.891 0.0°	6 0.902 0.907 0.926	Pt ₂ = RAKE NO. 2 4 6	0.1 0.805 0.811 0.808	2 0.808 0.815 0.818	TUBE 3 0.821 0.841 0.829	p ₂ /p ₃ NO. 14 0.838 0.871 0.855 m _{bp} /m	$ \begin{array}{c} $.6 0.908 0.933 0.921
RAKE NO	$p_{t_{\infty}} = 0.89$	TUBE 3 0.816 37 0.847 13 0.834 $\alpha =$	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.157 5 0.861 0.883 0.891 0.0°	6 0.902 0.907 0.926	Pt ₂ = RAKE NO. 2 4 6	0.1 0.805 0.811 0.808	2 0.808 0.815 0.818	TUBE 3 0.821 0.841 0.829	p ₂ /p ₀ NO. 0.838 0.871 0.855 m _{bp} /m p ₂ /r	$ \begin{array}{c} $.6 0.908 0.933 0.921
RAKE NO.	$p_{t_{\infty}} = 0.89$	TUBE TUBE TUBE 3 0.816 37 0.847 13 0.834 α = 344 TUBE	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.157 5 0.861 0.883 0.891 0.0°	6 0.902 0.907 0.926	$P_{t_2} = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{6}$ $m_{\infty} = \frac{1}{2}$ $p_{t_2} = \frac{1}{2}$	0.1 0.805 0.811 0.808	2 0.808 0.815 0.818	TUBE 3 0.821 0.841 0.829	p ₂ /p ₀ NO. 0.838 0.871 0.855 m _{bp} /m p ₂ /r	$ \begin{array}{c} $.6 0.908 0.933 0.921
RAKE NO. 1 3 5 M _∞ = \bar{p}_{t_2} RAKE	1 2 0.804 0.80 0.805 0.8 2.50 2/p _t _∞ = 0.8	TUBE 3 05 0.816 37 0.847 13 0.834 α = 344	$1/m_{\infty} =$ NO. 4 0.862 0.857	0.157 5 0.861 0.883 0.891 0.0° 0.13	6 0.902 0.907 0.926 mo	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO.	0.1 1 0.805 0.811 0.808 0.7	78 0.808 0.815 0.818 751 170	TUBE 3 0.821 0.841 0.829 TUBE	p ₂ /p ₃ NO. 4 0.838 0.871 0.855 m _{bp} /m p ₂ /p NO.	$_{\infty} = 14$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 0.908 0.933 0.921 17 14.2
RAKE NO. 1 3 5 M _∞ = Pt ₂ RAKE NO.	$p_{t_{\infty}} = 0.89$	TUBE 3 0.816 37 0.847 13 0.834 α = 344 TUBE 3 93 0.806	$1/m_{\infty} =$ NO. 4 0.862 0.857 0 1/m_{\infty} = NO. 4	0.157 5 0.861 0.883 0.891 0.0° 0.13	6 0.902 0.907 0.926 	Pt ₂ = RAKE NO. 2 4 6 /m _∞ = Pt ₂ = RAKE NO. 2	0.1 0.805 0.811 0.808 0.7	2 0.808 0.815 0.818 751 170 2 0.819	TUBE 3 0.821 0.841 0.829 TUBE 3 0.855	p ₂ /p ₀ NO. 4 0.838 0.871 0.855 m _{bp} /m p ₂ /r NO. 4 0.881	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.6 0.908 0.933 0.921 17 14.2 6 0.909

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$	=2	. 50	α =	= 0	, 0°	m _C	$/m_{\infty} =$	0.75	51	,,,,,,	$m_{ m bp}/m_{ m c}$, = <u>0.3</u>	37
₱ _{t2}	₂ /p _t , =	0.86	1 m	$_{\rm ol}/{\rm m}_{\infty}$ =	0.1	7 <u>5</u> 2	19 _{t2} =	0.1	21	_	p ₂ /p _o	_o = <u>14</u>	. 8
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE	NO.	5	[6]
3	11 -	1	1	ī	1	7	n	TT	1	1		1	0.887
5													0.919
${\rm M}_{\infty}$	=2	.50	α =	= (0.00	mo	$/m_{\infty} =$	0.75	51		m _{bp} /m	∞ = <u> </u>	35
₽ _{t2}	$p_{t_{\infty}} =$	0.848	8 m _b	$_{1}/m_{\infty} =$	0.16	<u>7</u>	p _{t2} =	0.13	36	×	p ₂ /p	ω =]	14.6
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE	NO.	5	
,	0.827	0.829	0.834		0.847	0.870	2	0.830	0.828	0.831	0.846	0.853	0.860
i	В	1	1	ì	1		II .	ìi -	Ĩ 1	î · · · · ·	1-	î	0.911 0.893
									- 2				
		• DU	$\alpha =$: ().0	mc	$m_{\infty} =$	0.7	751		m _{bn} /m	$_{\infty} = 0$.	.33
								0.7					
P̄ _{t;}	/p _{t_∞} =	0.823	3_ m _b	$_1/m_\infty =$	0.149		p _{t2} = .	0.1	67		p ₂ /p	∞ = <u>1</u>	4.0
P̄ _{t;}	/p _{t_∞} =	0.823	3_ m _b	$_1/m_\infty =$	0.149		p _{t2} = .	0.1	67		p ₂ /p	∞ = <u>1</u>	4.0
Pt;	/p _t _∞ =	0.823	3_ m _b	$1/m_{\infty} =$ NO.	0.149		P _{t2} = . RAKE NO.	0.1	2	TUBE	P ₂ /P ₀	∞ = <u>1</u>	4.0
Pt;	/p _t _∞ =	2 0.792	3 m _b TUBE 3 0.798	$1/m_{\infty} =$ NO.	0.149	6 0.837	Pt ₂ = RAKE	0.1	2 0.791	TUBE 3 0.802	P ₂ /P ₀ NO.	∞ = <u>1</u> 5 0.847	4.0 6 0.867
Ptz	/p _t = 1 0.788 0.794	2 0.792 0.807	TUBE 3 0.798	$1/m_{\infty} = 1/m_{\infty} = 1/m_{\infty}$ NO. 4 0.850	0.149 5 0.808 0.867		Pt? = RAKE NO.	0.1 1 0.788	2 0.791 0.802	TUBE 3 0.802	P ₂ /P ₀ NO. 0.824 0.831	5 0.847 0.856	4.0 6 0.867 0.868
RAKE NO.	/Pt _w = 1	2 0.792 0.807 0.798	TUBE 3 0.798 0.830 0.816	$1/m_{\infty} =$ NO. 4 0.850 0.833	0.149 5 0.808 0.867 0.877	6 0.837 0.886 0.902	Pt ₂ = RAKE NO 2	0.1 1 0.788 0.795 0.791	2 0.791 0.802 0.797	TUBE 3 0.802 0.814 0.806	P ₂ /P ₀ NO. 14 0.824 0.831 0.816	5 0.847 0.856 0.837	6 0.867 0.868 0.856
RAKE NO. 1 3 5 $M_{\infty} =$	/p _t = 1 0.788 0.794 0.790	2 0.792 0.807 0.798	TUBE 3 0.798 0.830 0.816 $\alpha =$	$1/m_{\infty} =$ NO. 4 0.850 0.833	0.149 [5 0.808 0.867 0.877	6 0.837 0.886 0.902	Pt ₂ = RAKE NO 2	0.1 1 0.788 0.795 0.791 0.75	2 0.791 0.802 0.797	TUBE 3 0.802 0.814 0.806	P ₂ /P ₀ NO. 0.824 0.831 0.816 m _{bp} /m ₀	5 0.847 0.856 0.837	6 0.867 0.868 0.856
RAKE NO. 1 3 5 M _∞ =	/Pt _w = 1	2 0.792 0.807 0.798	TUBE 3 0.798 0.830 0.816 $\alpha =$	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.149 [5 0.808 0.867 0.877	6 0.837 0.886 0.902	$Pt_{2} = \frac{1}{RAKE}$ $RAKE = \frac{1}{NO}$ $\frac{2}{L}$ $\frac{L}{6}$ $\frac{1}{M_{\infty}} = \frac{1}{R}$	0.1 1 0.788 0.795 0.791 0.75	2 0.791 0.802 0.797	TUBE 3 0.802 0.814 0.806	P ₂ /P ₀ NO. 0.824 0.831 0.816 m _{bp} /m ₀ p ₂ /p	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 0.867 0.868 0.856
RAKE NO. 1 3 5 $M_{\infty} =$	/p _t = 1 0.788 0.794 0.790	2 0.792 0.807 0.798	TUBE 3 0.798 0.830 0.816 $\alpha = \frac{m_b}{m_b}$	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.149 [5 0.808 0.867 0.877	6 0.837 0.886 0.902	$Pt_{2} = \frac{1}{2}$ RAKE NO. 2 $\frac{1}{2}$ 6 $/m_{\infty} = \frac{1}{2}$ $p_{t_{2}} = \frac{1}{2}$	0.1 1 0.788 0.795 0.791 0.75	2 0.791 0.802 0.797	TUBE 3 0.802 0.814 0.806	P ₂ /P ₀ NO. 0.824 0.831 0.816 m _{bp} /m ₀ p ₂ /p	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 0.867 0.868 0.856
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	/p _t = 1	2 0.792 0.807 0.798 .50 0.850	TUBE 3 0.798 0.830 0.816 α = TUBE 3	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ $\frac{1}{m_{\infty}}$ $\frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$	0.149 0.808 0.867 0.877 0.174	6 0.837 0.886 0.902	Pt2 = RAKE NO.	0.1 1 0.788 0.795 0.791 0.75	2 0.791 0.802 0.797	TUBE 3 0.802 0.814 0.806	P ₂ /P ₀ NO. 14 0.824 0.831 0.816 m _{bp} /m ₀ p ₂ /p NO. 14		6 0.867 0.868 0.856
\bar{P}_{tz} RAKE NO. 1 3 5 $M_{\infty} = \bar{P}_{tz}$ RAKE NO.	/p _t = 1 0.846	2 0.792 0.807 0.798 .50 0.850	TUBE 3 0.798 0.830 0.816 α = TUBE 3 0.846	$1/m_{\infty} =$ NO. 4 0.850 0.833 $1/m_{\infty} =$ NO. 4	0.149 5 0.808 0.867 0.877 0.174 5 0.848	6 0.837 0.886 0.902	$Pt_2 = \frac{1}{2}$ RAKE NO. 2 $\frac{1}{2}$ 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.1 0.788 0.795 0.791 0.75 0.00 1 0.847 0.845	2 0.791 0.802 0.797 1 78 2 0.845 0.847	TUBE 3 0.802 0.814 0.806 TUBE 3 0.845 0.850	P ₂ /P ₀ NO. 4		6 0.867 0.868 0.856

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$		2.50	_ α =		8.0°	m _O	$/m_{\infty} = 1$			1	m _{bp} /m∞	=	0.37_
$\overline{\mathtt{p}}_{tz}$	2/p _{t∞} =	0.662	m _b	$_{1}/m_{\infty}$ =	0.127	_ △	p _{t2} = -	0.3	61		p_2/p_{∞}	=1	3.2
RAKE		-	TUBE	NO.			RAKE		_	TUBE	NO.	_	
NO.	1	2	3	4	5	6	NO.	1	2	3	NO.	5	6
1	0.783										0.628		
3	0.629	0.628	0.628	0.624	0.621	0.611	4	0.631	0.630	0.629	0.626	0.623	0.621
5	0.626	0.630	0.628	0.621	0.622	0.613	6	0.649	0.652	0.641	0.631	0.629	0.633
M _∞ :	= 2.	.25	_ α =	·C	0.00	m _O ,	/m _∞ = .	0.6	28		m _{bp} /m _c	_∞ =0	1
							_				p ₂ /p ₀		
RAKE			TUBE	NO.		ļ	RAKE			TUBE	NO.	<u> </u>	
NO.	1	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.867	0.872	0.901	0.924	0.933	0.907	2	0.867	0.881	0.902	0.915	0.923	0.875
3	0.862	0.877	0.903	0.919	0.927	0.863	4	0.864	0.886	0.911	0.920	0.931	0.870
5	0.869	0.879	0.898	0.917	0.918	0.863	6	0.870	0.891	0.921	0.943	0.930	0.858
								. .		1			
											m _{bp} /m		
M _∞ =	=	2.25	_ α =	0	0.0°	m _O	/m _∞ =	0.	628		•	· =0)
M _∞ =	=	2.25 0.882	α = 2_ mb; TUBE	$m_{\infty} = \frac{1}{m_{\infty}}$	0.149	m _O	$/m_{\infty} = $ $p_{t_{\mathcal{P}}} = $	0.	628		m _{bp} /m _o	· =0)
$M_{\infty} = \overline{p}_{t_z}$	=	2.25 0.882	α = 2_ mb; TUBE	$m_{\infty} = \frac{1}{m_{\infty}}$	0.149	m _O	$/m_{\infty} =$ $p_{t_{\mathcal{P}}} =$ RAKE	0.	.087	TUBE	m _{bp} /m _o	∞ = <u>0</u> ∞ = <u>9.</u>	8
M _∞ = \$\bar{p}{t_2}\$ RAKE NO.	=	2.25	$\alpha = \frac{\alpha}{2} m_{b}$ TUBE	$\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ NO.	0.149 5	m _o	$/m_{\infty} =$ $p_{t_{\mathcal{P}}} = -$ RAKE	0.	087	TUBE	m _{bp} /m _o	$\infty = _{0}$ $= _{9}$	8 6
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	- /p _t =	2.25	$\alpha = \frac{\alpha}{2} m_b$ TUBE $\frac{3}{0.883}$	$\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ 0.908	0.149 5 0.919	m _o 6 0.890	$m_{\infty} = 1$ $p_{t_2} = 1$ $m_{\infty} = 1$ $m_{\infty} = 1$ $m_{\infty} = 1$	0.0.862	628 .087 2 0.875	TUBE 3 0.885	m _{bp} /m _e p ₂ /p _e NO.	$\infty = 0$ $\infty = 9$ 0.893	8 6 0.858
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1	1 0.848	2.25 0.882 0.862 0.878	α = 2 mb TUBE 3 0.883 0.898	$1/m_{\infty} = \frac{1}{1}$ NO. 4 0.908 0.894	0.149 5 0.919 0.884	m _o 6 0.890 0.851	$m_{\infty} = \frac{1}{2}$ RAKE	0. 0. 0.862 0.861	628 087 2 0.875 0.888	TUBE 3 0.885	m _{bp} /m _c p ₂ /p _c NO. 4 0.898	$\infty = 0$ $\infty = 9$ 0.893 0.909	8 6 0.858 0.850
$M_{\infty} = \overline{p}_{t_z}$ RAKE NO. 1 3 5	p _{t_∞} =	2.25 0.882 0.862 0.878 0.878	α = 2 mb TUBE 3 0.883 0.888	$m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.908 0.894 0.888	0.149 0.149 5 0.919 0.884 0.885	m _o 6 0.890 0.851 0.850	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2	0. 0. 0.862 0.861 0.866	628 087 2 0.875 0.888 0.890	TUBE 3 0.885 0.912 0.900	m _{bp} /m _o p ₂ /p _o NO. 4 0.898 0.924	$\infty = 0$ $\infty = 9$ 0.893 0.909 0.898	8 6 0.858 0.850 0.847
$M_{\infty} = \frac{\overline{p}_{t_2}}{\overline{p}_{t_2}}$ RAKE NO. 1 3 5	p _{t_∞} =	2.25 0.882 0.862 0.878 0.878	$\alpha = \frac{1}{2}$ TUBE 3 0.883 0.888 0.888	$1/m_{\infty} = \frac{1}{1}$ NO. 4 0.908 0.894 0.888	5 0.919 0.884 0.885	6 0.890 0.851 0.850	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} =$	0. 0. 0.862 0.861 0.866	628 .087 2 0.875 0.888 0.890	TUBE 3 0.885 0.912 0.900	m _{bp} /m _o p ₂ /p _o NO. 4 0.898 0.924 0.911	5 0.893 0.909 0.898	8 6 0.858 0.850 0.847
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{tz}$ RAKE	1 0.848 0.859 0.864	2.25 0.882 0.862 0.878 0.878	$\alpha = \frac{1}{2}$ TUBE 3 0.883 0.888 0.888	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.908 0.894 0.888	5 0.919 0.884 0.885	6 0.890 0.851 0.850	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ Pt ₂ RAKE	0.862 0.861 0.866	628 .087 2 0.875 0.888 0.890	TUBE 3 0.885 0.912 0.900	m _{bp} /m _o p ₂ /p _o NO. 4 0.898 0.924 0.911 m _{bp} /m _o p ₂ /p	5 0.893 0.909 0.898	8 6 0.858 0.850 0.847
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{tz}$	1 0.848 0.859 0.864	2.25 0.882 0.862 0.878 0.878	$\alpha = \frac{\alpha}{2}$ TUBE 3 0.883 0.898 0.888	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.908 0.894 0.888	5 0.919 0.884 0.885	6 0.890 0.851 0.850	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$	0.862 0.861 0.866	628 .087 2 0.875 0.888 0.890	TUBE 3 0.885 0.912 0.900	m _{bp} /m _o p ₂ /p _o NO. 4 0.898 0.924 0.911 m _{bp} /m _o p ₂ /p	5 0.893 0.909 0.898	8 6 0.858 0.850 0.847
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{tz}$ RAKE	1 0.848 0.859 0.864 2	2.25 0.882 0.862 0.878 0.878 0.878	α = 2 mb TUBE 3 0.883 0.888 0.888 α = mb	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.908 0.894 0.888	5 0.919 0.884 0.885 0.0°	m _o 6 0.890 0.851 0.850 m _o △	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.862 0.861 0.866 0.6	628 .087 2 0.875 0.888 0.890 528	TUBE 3 0.885 0.912 0.900 TUBE	m _{bp} /m _o p ₂ /p _o NO. 4 0.898 0.924 0.911 m _{bp} /m _o p ₂ /p	$\infty = 0$ $\infty = 9$ 0.893 0.909 0.898 $\infty = 0$ $\infty = 0$	8 6 0.858 0.850 0.847 0
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{tz}$ RAKE NO.	1 0.848 0.859 0.864 2 /p _t =	2.25 0.882 0.862 0.878 0.878 0.878 25 0.850	α = 2 mb TUBE 3 0.883 0.898 0.888 α = mb TUBE 3	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.908 0.894 0.888	0.149 5 0.919 0.884 0.885 0.0° 0.135	m _o 6 0.890 0.851 0.850 m _o △	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$	0.862 0.861 0.866 0.6	628 087 0.875 0.888 0.890 628 22 2	TUBE 3 0.885 0.912 0.900 TUBE 3 0.870	m _{bp} /m _o p ₂ /p _o NO. 4 0.898 0.924 0.911 m _{bp} /m _o p ₂ /p NO.	5 0.893 0.909 0.898 \times =	8 6 0.858 0.850 0.847 0 0.4

Table 2.~ SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} ~ Continued Bleed exit setting B

$M_{\infty} = 2.25$	$\alpha = 0.0^{\circ}$	$m_{O}/m_{\infty} = \underline{0.628}$	$m_{\rm bp}/m_{\infty} = 0.03$
$\bar{p}_{t_2}/p_{t_{\infty}} = 0.926$	$m_{\rm bl}/m_{\infty} = 0.157$	$\Delta p_{tz} = 0.087$	$p_2/p_{\infty} = 10.0$
1 0.886 0.89 3 0.885 0.899	1 0.910 0.938 0.959 9 0.918 0.935 0.950	RAKE NO. 1 2 0.961 2 0.891 0.903 0.952 4 0.889 0.904 0.949 6 0.894 0.911	0.918 0.932 0.948 0.948 0.927 0.942 0.954 0.956
$M_{\infty} = 2.25$	$\alpha = 0.0^{\circ}$	$m_{\rm O}/m_{\infty} = 0.628$	$m_{bp}/m_{\infty} = 0.03$
		$\Delta p_{t_2} = \frac{0.092}{1}$	
3 0.859 0.873	0.894 0.912 0.926	RAKE NO. 1 2 0.936 2 0.867 0.880 0.932 4 0.865 0.874 0.928 6 0.868 0.885	0.898 0.914 0.927 0.931
$M_{\infty} = 2.25$	$\alpha = 0.0^{\circ}$	$m_{\rm O}/m_{\infty} = 0.628$	$m_{\rm bp}/m_{\infty} = 0.03$
$\bar{p}_{t_2}/p_{t_\infty} = 0.88$	$m_{\rm bl}/m_{\infty} = 0.146$	$\Delta p_{t_2} = \frac{0.080}{1.000}$	p ₂ /p _∞ = 10.0
1 0.854 0.872 3 0.846 0.858 5 0.852 0.870	0.891 0.906 0.916 0.879 0.890 0.898 0.892 0.900 0.909	RAKE 6 NO. 1 2 0.912 2 0.857 0.875 0 0.896 4 0.855 0.871 0 0.904 6 0.853 0.869 0	0.892 0.900 0.906 0.899 0.890 0.898 0.907 0.905 0.887 0.900 0.910 0.908
$M_{\infty} = \frac{2.25}{}$	$\alpha = 0.0^{\circ}$	$m_{\rm O}/m_{\infty} = 0.628$	$m_{\rm bp}/m_{\rm co} = 0.14$
$\bar{p}_{t_2}/p_{t_{\infty}} = \underline{\text{C.885}}$	$m_{bl}/m_{\infty} = 0.155$	$\Delta p_{t_2} = 0.098$	p ₂ /p _∞ = 10.2
3 0.851 0.858	TUBE NO. 3	0.912 4 0.857 0.866 0	TUBE NO. 3 4 5 6 0.881 0.894 0.904 0.913 0.878 0.897 0.912 0.927 0.881 0.898 0.925 0.937

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$	2.	25	<u></u> α =		0.00	m _O	$/m_{\infty} = 1$	0.6	28	r	$m_{ m bp}/m_{ m \infty}$	=	.14
₱t₂	₂ /p _{t_∞} -	0.876	m _b	$_{l}/m_{\infty} =$	0.148	Δ	p _{t2} =_	0.08	2		p_2/p_{∞}	=	0.1
RAKE NO.		I .	TUBE	NO.	-	6	RAKE NO.	,		TUBE	1	5	
 	ll .					1 1	! !	1	2	3	4		
	n	1 1	0.881		1	[· · ·]	1 1	0.848	í I			- 1	
3	ĬĬ	i	0.858		i i	ì i	I . I	0.846	ו" ו		1		
5	-		0.873				<u> </u>	0.844					
M_{∞}	= 2.	25	_ α =	0	.0°	m _O	/m _∞ = .	0.62	.8		$m_{\rm bp}/m_{\rm o}$	· = <u>0 · </u>	13
₱ _{t≥}	$p_{t_{\infty}} =$	0.850	m _b	$_{l}/m_{\infty} =$	0.139	<u> </u>	p _{t2} = _	0.13	8		p ₂ /p ₀	= 9.	9
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	_ 5	6	NO.	1	2	3	4	5	6
1	0.816	0.833	0.865	0.893	0.921	0.920	2	0.811	0.823	0.846	0.876	0.880	0.867
	TI	1	, ,	7		7		0.813	5 :				
5	0.810	0.821	0.832	0.836	0.852	0.859	6	0.814	0.830	0.845	0.847	0.843	0.844
					_								
$M_{\infty} =$	2.2	25	α =		0.00	m _O	$/m_{\infty} =$	0.	628		m _{bp} /m _o	_∞ = _ 0	.26
								0.					
P _{t;}	/p _t =	0.86	<u>64</u> m _b	$_1/m_\infty =$	0.15	5 <u>1</u> Δ	p _{t2} =	0.	084		p ₂ /p ₆	x =	10.1
	/p _t =	0.86	<u>64</u> m _b	$_1/m_\infty =$	0.15	5 <u>1</u> Δ	p _{t2} =	0.	084		p ₂ /p ₆	x =	10.1
̄ρ _t ;	/p _t =	2	<u>64</u> m _b	$1/m_{\infty} = \frac{1}{1}$ NO.	0.15	<u>δ1</u> Δ	Pts = RAKE		084	TUBE	p ₂ /p ₀	» = 	10.1
RAKE NO.	/p _t =	2.0.843	TUBE	$1/m_{\infty} = \frac{1}{1}$ NO. $\frac{1}{1}$ 0.861	0.15 5 0.878	6 0.900	Pt ₂ = RAKE NO.	0.	084	TUBE 3 0.845	P ₂ /P ₀ NO. 4 0.852	5 0.861	6 0.868
RAKE NO.	p _t _w =	0.86 2 0.843 0.854	TUBE 3 0.848	$1/m_{\infty} = \frac{1}{4}$ 0.861 0.876	0.15 5 0.878 0.880	6 0.900 0.884	Pt ₂ = RAKE NO. 2	0. 1 0.840	084 2 0.839 0.850	TUBE 3 0.845 0.864	P ₂ /P ₆ NO. 4 0.852 0.880	5 0.861 0.899	6 0.868 0.911
RAKE NO.	/p _t = 1 0.838 0.849 0.840	2 0.843 0.854 0.847	TUBE 3 0.848 0.866 0.858	$1/m_{\infty} = \frac{1}{1/m_{\infty}}$ NO. $\frac{1}{1/m_{\infty}}$ 0.861 0.876 0.858	0.15 5 0.878 0.880 0.868	6 0.900 0.884 0.875	Pt ₂ = RAKE NO. 2 4	0. 0.840 0.346 0.851	084 2 0.839 0.850 0.857	TUBE 3 0.845 0.864	P ₂ /P ₆ NO. 4 0.852 0.880 0.875	5 0.861 0.899 0.888	6 0.868 0.911 0.904
\bar{p}_{t_2} RAKE NO. 1 3 5	/p _t = 1 0.838 0.849 0.840	2.0.86 0.843 0.854 0.847	TUBE 3 0.848 0.866 0.858 α =	$1/m_{\infty} = \frac{1}{1}$ NO. $\frac{1}{4}$ 0.861 0.876 0.858	5 0.878 0.880 0.868	6 0.900 0.884 0.875	$p_{t_{\mathcal{P}}} =$ RAKE NO. 2 4 6	0. 1 0.840 0.346	084 2 0.839 0.850 0.857	TUBE 3 0.845 0.864 0.861	P ₂ /P ₆ NO. 4 0.852 0.880 0.875	5 0.861 0.899 0.888	6 0.868 0.911 0.904
\bar{p}_{t_2} RAKE NO. 1 3 5 M_{∞} \bar{p}_{t_2}	Pt _w =	2.0.86 0.843 0.854 0.847	TUBE 3 0.848 0.866 0.858 α =	$1/m_{\infty} = \frac{1}{1/m_{\infty}}$ NO. $\frac{1}{4}$ 0.861 0.876 0.858	5 0.878 0.880 0.868	6 0.900 0.884 0.875	Pt ₂ = RAKE NO. 2 4 6 $/m_{\infty}$ =	0.840 0.846 0.851	084 2 0.839 0.850 0.857	TUBE 3 0.845 0.864 0.861	P ₂ /P ₀ NO. 4 0.852 0.880 0.875 m _{bp} /m ₀ p ₂ /p	5 0.861 0.899 0.888	6 0.868 0.911 0.904
\bar{p}_{t_2} RAKE NO. 1 3 5	Pt _w =	2.0.86 0.843 0.854 0.847	TUBE 3 0.848 0.866 0.858 α = 3 m _b	$1/m_{\infty} = \frac{1}{1/m_{\infty}}$ NO. $\frac{1}{4}$ 0.861 0.876 0.858	5 0.878 0.880 0.868	6 0.900 0.884 0.875	$p_{t_{\mathcal{P}}} =$ RAKE NO. 2 4 6	0.840 0.846 0.851	084 2 0.839 0.850 0.857	TUBE 3 0.845 0.864 0.861	P ₂ /P ₀ NO. 4 0.852 0.880 0.875 m _{bp} /m ₀ p ₂ /p	5 0.861 0.899 0.888	6 0.868 0.911 0.904
\bar{p}_{t} RAKE NO. 1 3 5 M_{∞} \bar{p}_{t} RAKE NO.	Pt _w =	2 0.843 0.854 0.847 2.25 0.858	TUBE 3 0.848 0.866 0.858 α = 3 m _b TUBE	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. $\frac{4}{0.861}$ 0.876 0.858	5 0.878 0.880 0.868 0.0°	6 0.900 0.884 0.875 mo	$p_{t_2} =$ RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO.	0.840 0.846 0.851 0.62	084 2 0.839 0.850 0.857 28	TUBE 3 0.845 0.864 0.861 TUBE 3	P ₂ /P ₀ NO. 4 0.852 0.880 0.875 m _{bp} /m ₀ P ₂ /P NO.	5 0.861 0.899 0.888 $\infty = 0$	6 0.868 0.911 0.904 .25
\bar{p}_{t} RAKE NO. 1 3 5 M_{∞} \bar{p}_{t} RAKE NO. 1	1 0.838 0.849 0.840	2 0.843 0.854 0.847 2.25 0.858	TUBE 3 0.848 0.866 0.858 α = 3 mb TUBE 3 0.859	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{m_{\infty}}$ $\frac{1}{m_{\infty}}$ NO. $\frac{1}{m_{\infty}}$	0.15 0.878 0.880 0.868 0.0° 0.145	6 0.900 0.884 0.875 	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2	0.840 0.846 0.851 0.62 0.07	084 2 0.839 0.850 0.857 28 2 0.839	TUBE 3 0.845 0.864 0.861 TUBE 3 0.856	P ₂ /P ₀ NO. 4 0.852 0.880 0.875 Mbp/m P ₂ /P NO. 4 0.868	5 0.861 0.899 0.888 $\infty = 0$	6 0.868 0.911 0.904 .25 10.0
\bar{p}_{t} RAKE NO. 1 3 5 M_{∞} \bar{p}_{t} RAKE NO.	1 0.838 0.849 0.840	0.86 0.843 0.854 0.847 2.25 0.858 0.847 0.832	TUBE 3 0.848 0.866 0.858 α = 3 m _b TUBE	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ 0.861 0.876 0.858 $\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ 0.867 0.846	0.15 0.878 0.880 0.868 0.0° 0.145 5 0.878 0.862	6 0.900 0.884 0.875 mo 5 \(\Delta \)	Pt2 = RAKE NO. RAKE NO. RAKE NO. 2 4	0.840 0.840 0.851 0.62 0.07	0.839 0.850 0.857 28 2 0.839 0.840	TUBE 3 0.845 0.864 0.861 TUBE 3 0.856	P ₂ /P ₀ NO. 4 0.852 0.880 0.875 m _{bp} /m ₀ P ₂ /P NO. 4 0.868	5 0.861 0.899 0.888 $\infty = 0$ $\infty = 0$ 0.881 0.878	6 0.868 0.911 0.904 .25 10.0

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									440 00 4 00			-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\bar{p}_{t_2}	/p _t =	0.816	<u> </u>	1/m _∞ =	0.138	_ ^	p _{t2} = -	0.1	.58		p₂/p∞	= 9.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RAKE			TUBE	NO.		Ī	RAKE			TUBE	NO.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO.	1 1 1	2	3	4	5	6	NO.	1	2	3	4	5	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0.855	0.878	0.893	0.888	0.870	0.804	2	0.863	0.846	0.839	0.850	0.837	0.785
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.791	0.785	0.790	0.791	0.790	0.773	4	0.779	0.779	0.780	0.785	0.772	0.764
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.793	0.784	0.783	0.785	0.786	0.769	6	0.858	0.857	0.864	0.870	0.845	0.780
RAKE NO. 1 2 3 4 5 6 NO. 1 2 NO. 1 1 1 1 2 NO. 1 1 1 1 2 NO. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												m _{bp} /m _o	o = 0.	12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\bar{p}_{t_2}	/p _t =	0.804	m _b	$_1/m_\infty =$	0.136		p _{t2} = .	0.15	8	<u>.</u>	p_2/p_0	_∞ = 9	.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	RAKE			TUBE	NO.		,	RAKE			TUBE	NO.		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO.	1	2	3	lμ	5	6	NO.	l	5	3	4	5	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Π	1	1 1	1	1		1					0.804	0.812
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.766	0.764	0.767	0.772	0.776	0.777	4	0.769	0.772	0.776	0.780	0.785	0.789
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	0.766	0.767	0.770	0.767	0.770	0.771	6	0.840	0.817	0.806	0.812	0.819	0.827
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M _∞ =	2.2	25	_ α =	· 8.	00	m _O	/m _∞ =				m _{bp} /m _o	_∞ =	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	₱ _{t2}	$p_{t_{\infty}} =$	0.734	m _b	$_1/m_\infty =$	0.117		p _{t2} =	0.26	0		p ₂ /p	_∞ =8	.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RAKE	I	**	TUBE	NO.			RAKE	I		TUBE	NO.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		П	I	1	7	ı	T .	1	π		I	1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.720	0.716	0.711	0.697	0.685	0.676	4	0.693	0.693	0.695	0.694	0.683	0.674
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	#	•		ŧ	•		2	#	;	•	•		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	-		*		•	•	–		•			•	
NO. 1 2 3 4 5 6 NO. 1 2 3 4 5 6 1 0.828 0.864 0.873 0.858 0.847 0.832 2 0.801 0.731 0.712 0.713 0.711 0.713 3 0.697 0.695 0.693 0.693 0.691 4 0.689 0.685 0.682 0.687 0.693 0.696														
NO. 1 2 3 4 5 6 NO. 1 2 3 4 5 6 1 0.828 0.864 0.873 0.858 0.847 0.832 2 0.801 0.731 0.712 0.713 0.711 0.713 3 0.697 0.695 0.693 0.693 0.691 4 0.689 0.685 0.682 0.687 0.693 0.696	RAKE	1		TUBE	NO.			RAKE	I		TUBE	NO.		
1 0.828 0.864 0.873 0.858 0.847 0.832 2 0.801 0.731 0.712 0.713 0.711 0.713 3 0.697 0.695 0.693 0.690 0.693 0.691 4 0.689 0.685 0.682 0.687 0.693 0.696		1	2	· ·	1	5	6		ı	2	3	4	5	6
3 0.697 0.695 0.693 0.690 0.693 0.691 4 0.689 0.685 0.682 0.687 0.693 0.696	1	0.828	0.864	÷	0.858	4	1	2	0.801	0.731	ŧ -	0.713	0.711	0.713
	ì	ή.	Î	į .	į.	į.	ţ	II.	Tī.	ı	Ţ		+	
		1 <u>1</u>	Ī	ī	!	Ŷ		Ħ	#	:	;	i —	÷	

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

M_{∞} :	= _2	.00	α =	=0	.0°	m _e	$_{\rm O}/{\rm m}_{\infty} =$	0.5	18		m _{bp} /m _c	o = <u>0</u>	.15
<u></u> ₽t	₂ /p _t ,	0.804	m	$_{\rm bl}/{\rm m}_{\infty}$	= 0:10	9	Δp _{t2} =	0.1	42		p ₂ /p ₀	_∞ =	6.3
RAKE NO.	0.781	0.798 0.765	0.818	0.830	0.841	0.845	2 4_	0.768	0.783	0.798	0.829	0.836	0.838
5													0.852
M_{∞}	= 2.	.00	_ α =	=(0.00	m _C	$_{\rm o}/{\rm m}_{\rm \infty} =$	0.5	518		m _{bp} /m	∞ = <u> </u>	27
₱t₂	$_{\rm 2}/{\rm p}_{\rm t_{\infty}} =$												
RAKE NO. 1 3 5	0.829	0.835	0.849	0.861 0.839	0.870 0.846	0.874 0.856	2	0.831	0.833	0.833	0.848	0.860	6 0.864 0.889 0.875
M							-	_		•	•	•	
I _A I [∞] =	=2	.00	α =	0.	00	m _C	$_{\rm o}/{\rm m}_{\infty} =$	0	.518		m_{bp}/m	∞ = <u> </u>	.27
	$= \frac{2}{2} p_{t_{\infty}} = \frac{2}{2}$												
P _t	₂ /p _{t_∞} =	0.833	m _b	1/m _∞ =	0.124		p _{t2} = .	0	.045		p ₂ /p	_∞ =	6.6
Pt: RAKE NO.	p _t _∞ =	0.833	TUBE	$1/m_{\infty} =$ NO.	0.124		Pt ₂ = . RAKE NO.	0	.045	TUBE	P ₂ /P	∞ =	6.6
Pt:	p _t _∞ =	2	TUBE 3 0.832	$\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$	0.124 5 0.837	6 0.846	P _{t2} = . RAKE NO.	0 1 0.817	2	TUBE 3 0.829	p ₂ /p ₃ NO. 4	5 0.844	6.6
RAKE NO.	p _t _∞ =	2 0.824 0.820	TUBE 3 0.832 0.828	$1/m_{\infty} = 1$ NO. 4 0.834 0.830	0.124 5 0.837 0.836	6 0.846 0.838	Pt ₂ = . RAKE NO. 2	1 0.817 0.819	.045 2 0.825 0.823	TUBE 3 0.829 0.832	p ₂ /p NO. 14 0.841 0.840	5 0.844 0.846	6.6
Pt: RAKE NO. 1 3 5	p _t _∞ = 1 0.817 0.816 0.816	0.833 2 0.824 0.820 0.825	TUBE 3 0.832 0.828 0.831 α =	$1/m_{\infty} = 0$ NO. 4 0.834 0.830 0.837	0.124 5 0.837 0.836 0.852	6 0.846 0.838 0.851	$P_{t_2} = \frac{1}{2}$ RAKE NO 2 4 6 $m_{\infty} = \frac{1}{2}$	0.817 0.819 0.820	.045 2 0.825 0.823 0.825	TUBE 3 0.829 0.832 0.834	P ₂ /P ₀ NO. 4	5 0.844 0.846 0.847 $\infty = 0$	6.6 6 0.843 0.851 0.853
\bar{p}_{t} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t}$	p _t _∞ = 1 0.817 0.816 0.816	0.833 2 0.824 0.820 0.825	TUBE 3 0.832 0.828 0.831 α =	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$	0.124 5 0.837 0.836 0.852	6 0.846 0.838 0.851	$P_{t_2} =$ RAKE NO. 2 4 6 $/m_{\infty} =$ $P_{t_2} =$	0.817 0.819 0.820	.045 2 0.825 0.823 0.825	TUBE 3 0.829 0.832 0.834	p ₂ /p NO. 0.841 0.840 0.841 m _{bp} /m _o	5 0.844 0.846 0.847	6.6 6 0.843 0.851 0.853
\bar{p}_{t} : RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t}$: RAKE		0.833 2 0.824 0.820 0.825 .00 0.827	TUBE 3 0.832 0.828 0.831 α = TUBE	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ 0.834 0.837 $\frac{0}{1/m_{\infty}} = \frac{1}{m_{\infty}}$ NO.	0.124 5 0.837 0.836 0.852 .0° 0.120	6 0.846 0.838 0.851 mo	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE	0.817 0.819 0.820 0.55	.045 2 0.825 0.823 0.825	TUBE 3 0.829 0.832 0.834 TUBE	P ₂ /P ₂ /P ₃ NO.	5 0.844 0.846 0.847 $\infty = 0$	6.6 6 0.843 0.851 0.853 .25
\bar{p}_{t} : RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO.		0.833 2 0.824 0.820 0.825 .00 0.827	TUBE 3 0.832 0.828 0.831 α = TUBE TUBE	$1/m_{\infty} =$ NO. 4 0.834 0.830 0.837 0 $1/m_{\infty} =$ NO.	0.124 5 0.837 0.836 0.852 .0° 0.120	6 0.846 0.838 0.851 m _o	$P_{t_2} =$ RAKE NO. 2 4 6 $/m_{\infty} =$ Pt ₂ RAKE NO.	0.817 0.819 0.820 0.55	.045 2 0.825 0.823 0.825	TUBE 3 0.829 0.832 0.834 TUBE 3	p ₂ /p NO. 0.841 0.840 0.841 m _{bp} /m _o p ₂ /p	5 0.844 0.846 0.847 $\infty = 0$	6.6 6 0.843 0.851 0.853 .25
\bar{p}_{t} : RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t}$: RAKE	Pt _w =	0.833 2 0.824 0.820 0.825 .00 0.827	TUBE 3 0.832 0.828 0.831 α = TUBE 3 0.838	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ 0.834 0.837 $\frac{0}{1/m_{\infty}} = \frac{1}{m_{\infty}}$ NO.	0.124 5 0.837 0.836 0.852 .0° 0.120 5 0.854	6 0.846 0.838 0.851 mo	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO.	0.817 0.819 0.820 0.55 0.06	.045 2 0.825 0.823 0.825 18 66	TUBE 3 0.829 0.832 0.834 TUBE	P ₂ /P NO. 4 0.841 0.841 m _{bp} /m P ₂ /P NO. 4 0.826	= $ = $ $ =$	6.6 6 0.843 0.851 0.853 .25 6 0.840

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$	2.00	0	<u>.</u> α	5	.0°	m	$_{\rm O}/{\rm m}_{\infty}$ =				m _{bp} /m _c	∞ = <u> </u>	0
₱ _{t2}	₂ /p _t _∞ = _	0.836	5 m	m_{∞}	=_0.1	20	Δp _{t2} =	0.1	68		p ₂ /p	_∞ = <u>6</u>	.1
	1 0.835 0.818 0.821	.879 .815	0.912	0.920	0.910	0.820	2 4	0.887	0.901	0.883 0.791	0.881	0.854	0.779
M _∞ =	2.00)	_ α	= 5	.0°	m _C	$_{\rm O}/{\rm m}_{\infty} =$				m _{bp} /n	l∞ =	0.17
	$/p_{t_{\infty}} = 0$												
3	1 0.870 0 0.779 0 0.775 0	.879 .779	0.891 0.780	0.879	0.861	0.838	- 2 4	0.839	0.855	0.863	0.885	0.895	0.866
$M_{\infty} =$	2.00)	a =	= _5.0	0	m _C	$_{\rm O}/{\rm m}_{\infty} =$				$m_{\rm bp}/m$	∞ = <u>C</u>	.35
Pt ₂ /	$/p_{t_{\infty}} = \underline{c}$.787	m _b	$_{1}/\mathrm{m}_{\infty}$ =	0.121	Δ	p _t ,=	0.1	.83		p ₂ /p	~ = 6	.7
RAKE							- 2					w —	
NO. 1	1 0.835 0 0.751 0 0.747 0	.858 .758	0.868	0.871	0.873	0.864	RAKE NO. 2	1 0.776 0.754	0.792 0.758	0.754	0.812	5 0.819 0.749	0.805
NO. 1 3 5	0.835 0 0.751 0	. 858 . 758 . 750	0.868 0.756 0.752	0.871 0.746 0.749	0.873 0.745 0.745	0.864 0.733 0.729	RAKE NO. 2 4	1 0.776 0.754 0.773	0.792 0.758 0.794	0.789 0.754 0.812	0.812 0.751 0.828	5 0.819 0.749 0.839	0.805 0.739 0.844
NO. 1 3 5 M _{co} =	0.835 0 0.751 0 0.747 0	. 858 . 758 . 750	0.868 0.756 0.752 $\alpha =$	0.871 0.746 0.749	0.745 0.745 0.745	0.864 0.733 0.729	RAKE NO. 2 4	1 0.776 0.754 0.773	0.792 0.758 0.794	0.789 0.754 0.812	0.812 0.751 0.828 m _{bp} /m _o	5 0.819 0.749 0.839	0.805 0.739 0.844
NO. 1 3 5 M _{co} = \$\bar{p}_{t2}\$ RAKE	0.835 0 0.751 0 0.747 0 2.00 /p _t = 0.	. 758 . 758 . 750 . 762	0.868 0.756 0.752 $\alpha = \frac{m_b}{TUBE}$	0.871 0.746 0.749 $8.$ $1/m_{\infty} =$ NO.	0.873 0.745 0.745 0.745	0.864 0.733 0.729 m _O	RAKE NO. 2 4 6 $/m_{\infty} =$ $P_{t_2} =$ RAKE	1 0.776 0.754 0.773	0.792 0.758 0.794 - 266	0.789 0.754 0.812	0.812 0.751 0.828 m _{bp} /m _o p ₂ /p	5 0.819 0.749 0.839 $\infty =$ $\infty =5$	0.805
NO. 1 3 5 $M_{co} = \overline{p}_{tz}$ RAKE NO.	0.835 0 0.751 0 0.747 0 2.00 /p _t 0.	. 858 . 758 . 750 762	0.868 0.756 0.752 α =	0.871 0.746 0.749 $8.$ $1/m_{\infty} = \frac{NO}{4}$	0.745 0.745 0.745 0.00 0.106	0.864 0.733 0.729 m _O	RAKE NO. 2 4 6 $m_{\infty} =$ $p_{t_2} =$ RAKE NO.	1 0.776 0.754 0.773	0.792 0.758 0.794 - 266	0.789 0.754 0.812 TUBE	0.812 0.751 0.828 m _{bp} /m _o p ₂ /p ₁ NO.	5 0.819 0.749 0.839 $\infty =$ $\infty =5$	0.805 0.739 0.844 0 .5
NO. $\frac{1}{3}$ $M_{co} = \frac{\bar{p}_{t2}}{NO.}$ RAKE NO. $\frac{1}{1}$	0.835 0 0.751 0 0.747 0 2.00 /p _t = 0.	. 858 . 758 . 750 . 750 . 762 . 875	0.868 0.756 0.752 α = mb TUBE 3	$ \begin{array}{c} 0.871 \\ 0.746 \\ 0.749 \end{array} $ 8. $ 1^{/m_{\infty}} = \frac{1}{2} \\ NO. $ 4 0.896	0.873 0.745 0.745 0.106 0.106	0.864 0.733 0.729 	RAKE NO. 2 4 6 /m _∞ = Pt ₂ = RAKE NO.	1 0.776 0.754 0.773 0.	0.792 0.758 0.794 - 266 2 0.801	0.789 0.754 0.812	0.812 0.751 0.828 m _{bp} /m _o p ₂ /p NO.	5 0.819 0.749 0.839 $\infty =$	0.805 0.739 0.844 0 .5

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

M _∞ =	2.00	_ a =	8	.0°	m _o ,	/m _∞ = _			1	n _{bp} /nı∞	= _0.1	<u> 14</u>
\bar{p}_{t_2}	$/p_{t_{\infty}} = 0.750$	_ m _b	$_1/m_\infty$ =	0.106	_ △	Pt2 =-	0,26	2.		p_2/p_{∞}	= _6.4	'
RAKE NO.	1 2	TUBE	NO.	5	6	RAKE NO.	 i	2	TUBE		5	6
1	0.803 0.851			l l	1		l 1		1	0.734		
	0.709 0.710	1		1	1	1	0.704	0.704	0.705	0.702	0.705	0.709
55	0.706 0.710	0.710	0.703	0.702	0.704	6	0.825	0.775	0.750	0.743	0.742	0.744
${ m M}_{\infty}$	= 2.00	<u>α</u> =	8	.0°	m _O ,	/m _∞ = .				m _{bp} /m _c	o =	0.31
	$/p_{t_{\infty}} = 0.728$											
RAKE	1 2 0.801 0.850	TUBE	NO.			RAKE	<u> </u>		TUBE	NO.		
NO.	1 2	3	14	5	6	NO.	ļ j	2	3,	4	5	6
1	0.801 0.850	0.879	0.893	0.894	0.893	2	0.764	0.753	0.718	0.707	0.701	0.687
ì	0.684 0.685					u.	LI .	1 1		1		
5	0.686 0.689	0.691	0.680	0.678	0.661	6	0.777	0.752	0.727	0.718	0.715	0.710
•	AL					•	M	·	٠	•		
M _∞ =	1.75					/m _∞ =	M	<u> </u>		m/qdm	× =	·
	AC - 1,	α =		0.00	m _O		0	.451				0
	= 1.75 =/p _{t_∞} = 0.952	— CX ==b	1/m _∞ =	0.0° 0.138	m _О	Ptp =	0	.451		p ₂ /p ₀	∞ = . :	0 4.9
Ēt;	$= 1.75$ $p_{t_{\infty}} = 0.952$	— CX ==b	1/m _∞ =	0.0° 0.138	m _О	Ptp =	0	.451		p ₂ /p ₀	∞ = . :	0 4.9
Pt;	= 1.75 =/p _{t_∞} = 0.952	α =	$1/m_{\infty} = NO.$	0.00	Δ	P _{lp} =	0	.086	TUBE	p ₂ /p ₀	x = _ :	0
P _t	= 1.75 $p_{t_{\infty}} = 0.952$	α =mb	$1/m_{\infty} = \frac{1}{4}$ 0.945	0.0°	m _O Δ 6 0.924	Ptp = RAKE NO.	0.956	.451	TUBE 3 0.976	P ₂ /P ₀	_∞ = _ :	0 4.9 6 0.901
Pt;	$= 1.75$ $p_{t_{\infty}} = 0.952$ $\begin{vmatrix} 1 & 2 \\ 0.960 & 0.974 \end{vmatrix}$	α = TUBE 3 0.965 0.983	$1/m_{\infty} = \frac{1}{4}$ 0.945 0.979	0.0° 0.138 0.934 0.947	6 0.924 0.919	P _{lp} = RAKE NO.	0 0 1 0.956 0.957	.451 .086 2 0.970 0.970	TUBE 3 0.976 0.973	P ₂ /P ₀ NO. 4 0.974	5 0.947 0.934	0 4.9 6 0.901 0.919
RAKE NO.	$= 1.75$ $p_{t_{\infty}} = 0.952$ $\begin{vmatrix} 1 & 2 \\ 0.960 & 0.974 \\ 0.950 & 0.967 \end{vmatrix}$	α = TUBE 3 0.965 0.983 0.966	$1/m_{\infty} = $ NO. $\frac{1}{4}$ 0.945 0.979	0.0° 0.138 0.934 0.936	6 0.924 0.919	Ptp = RAKE NO. 2 4	0.956 0.957 0.960	.451 .086 2 0.970 0.970	TUBE 3 0.976 0.973 0.958	p ₂ /p ₃ NO. 14 0.974 0.953	5 0.947 0.934 0.935	0 4.9 6 0.901 0.919 0.920
Pt:	1.75 $p_{t_{\infty}} = 0.952$	α = TUBE 3 0.965 0.983 0.966	$1/m_{\infty} = $ NO. $\frac{1}{4}$ 0.945 0.979 0.946	0.0° 0.138 0.934 0.947 0.936	6 0.924 0.919 0.919	$P_{t_{P}} = \frac{1}{RAKE}$ RAKE NO. 2 4 6 $/m_{\infty} = \frac{1}{RAKE}$	0.956 0.957 0.960	.451 .086 2 0.970 0.970 0.970	TUBE 3_ 0.976 0.973 0.958	p ₂ /p ₀ NO. 4 0.974 0.953 0.944	5 0.947 0.934 0.935 $\infty = 0$	0 4.9 6 0.901 0.919 0.920
RAKE NO.	$\begin{array}{c} = 1.75 \\ 2 / p_{t_{\infty}} = 0.952 \\ $	α = TUBE 3 0.965 0.983 0.966	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.0° 0.138 0.934 0.947 0.936	6 0.924 0.919 0.919	Ptp = RAKE NO. 2 4 6 $/m_{\infty} =$ Ptp = RAKE	0.956 0.957 0.960	.451 .086 2 0.970 0.970 0.970	TUBE 3_ 0.976 0.973 0.958	P ₂ /P ₀ NO. 14 0.974 0.953 0.944 m _{op} /m	5 0.947 0.934 0.935 $\infty = 0$	0 4.9 6 0.901 0.919 0.920
Pt: RAKE NO. 1 3 5 M _∞ Pt:	$\begin{array}{c} = 1.75 \\ 2 / p_{t_{\infty}} = 0.952 \\ $	α = TUBE 3 0.965 0.983 0.966 α =	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.0° 0.138 0.934 0.947 0.936	6 0.924 0.919 0.919	Ptp = RAKE NO. 2 4 6 $/m_{\infty} =$ Pt2 =	0.956 0.957 0.960	.451 .086 2 0.970 0.970 0.970	TUBE 3 0.976 0.973 0.958	P ₂ /P ₀ NO. 14 0.974 0.953 0.944 m _{op} /m	5 0.947 0.934 0.935 $\infty = 0$	0 4.9 6 0.901 0.919 0.920
RAKE NO. 1 3 5 M _∞ \$\bar{p}_{t}\$	1.75 $p_{t_{\infty}} = 0.952$ $0.960 0.974$ $0.950 0.967$ $0.957 0.971$ 1.75 $p_{t_{\infty}} = 0.933$	α = TUBE 0.965 0.966 α = TUBE	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.0° 0.138 0.934 0.947 0.936 0° 0.13	6 0.924 0.919 0.919	Ptp = RAKE NO. 2 4 6 $/m_{\infty} =$ RAKE NO.	0.956 0.957 0.960 0.4	.451 .086 2 0.970 0.970 0.970 51 89	TUBE 0.976 0.973 0.958	p ₂ /p ₀ NO. 0.974 0.953 0.944 m _{op} /m p ₂ /p	$\infty = \frac{5}{0.947}$ 0.934 0.935 $\infty = \frac{0}{2}$	0 4.9 6 0.901 0.919 0.920
Pt: RAKE NO. 1 3 5 M _∞ pt:	$\begin{array}{c} 1.75 \\ 2 \\ p_{t_{\infty}} = 0.952 \\ \hline \\ 0.960 \\ 0.950 \\ 0.957 \\ 0.957 \\ \hline \\ 0.957 \\ 0.971 \\ \hline \\ 1.75 \\ \hline \\ 2 \\ p_{t_{\infty}} = 0.933 \\ \hline \\ 1 \\ 1 \\ 2 \\ \end{array}$	α = TUBE 3 0.965 0.983 0.966 α = TUBE 3 0.935	$1/m_{\infty} = $ NO. $\frac{1}{4}$ 0.945 0.979 0.946 0. NO. $\frac{1}{4}$ 0.936	0.0° 0.138 0.934 0.936 0° 0.13	mo 6 0.924 0.919 0.919 mo 1 6 0.914	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2	0.956 0.957 0.960 0.4 0.0	.451 .086 2 0.970 0.970 0.970 51 89	TUBE 3 0.976 0.973 0.958	p ₂ /p ₃ NO. 0.974 0.953 0.944 m _{op} /m p ₂ /p		0 4.9 6 0.901 0.919 0.920 .8

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 24 0.842
NO. 1 2 3 4 5 6 NO. 1 2 3 4 6 1 0.877 0.901 0.936 0.945 0.920 0.883 2 0.887 0.923 0.945 0.954 0.936 3 0.886 0.917 0.948 0.958 0.918 0.853 4 0.891 0.906 0.907 0.905 0.886	0.842
1 0.877 0.901 0.936 0.945 0.920 0.883 2 0.887 0.923 0.945 0.954 0.93 3 0.886 0.917 0.948 0.958 0.918 0.853 4 0.891 0.906 0.907 0.905 0.8	0.842
3 0.886 0.917 0.948 0.958 0.918 0.853 4 0.891 0.906 0.907 0.905 0.8	
 	0,871
5 0.887 0.918 0.948 0.945 0.914 0.863 6 0.894 0.901 0.899 0.898 0.8	
	0.870
$M_{\infty} = 1.75$ $\alpha = 0.0^{\circ}$ $m_{\odot}/m_{\infty} = 0.451$ $m_{bp}/m_{\infty} =$	0.03
$\bar{p}_{t_2}/p_{t_\infty} = 0.960$ $m_{bl}/m_\infty = 0.139$ $\Delta p_{t_2} = 0.074$ $p_2/p_\infty = 0.074$	5.0
RAKE TUBE NO. RAKE TUBE NO.	
NO. 1 2 3 4 5 6 NO. 1 2 3 4 5	
1 0.961 0.972 0.968 0.950 0.944 0.941 2 0.959 0.965 0.970 0.984 0.9	
3 0.952 0.964 0.976 0.983 0.975 0.962 4 0.957 0.961 0.974 0.969 0.9	
5 0.952 0.964 0.971 0.956 0.949 0.945 6 0.960 0.968 0.966 0.951 0.9	4 0.943
$M_{\infty} = 1.75$ $\alpha = 0.0^{\circ}$ $m_{O}/m_{\infty} = 0.451$ $m_{Dp}/m_{\infty} =$	0.03
$\bar{p}_{t_2}/p_{t_\infty} = \underline{0.938}$ $m_{b_1}/m_\infty = \underline{0.133}$ $\Delta p_{t_2} = \underline{0.070}$ $p_2/p_\infty = \underline{0.070}$	4.9
RAKE TUBE NO. RAKE TUBE NO.	
NO. 1 2 3 4 5 6 NO. 1 2 3 4 5	6
1 0.944 0.941 0.934 0.931 0.939 0.940 2 0.958 0.954 0.936 0.936 0.9	7 0.892
3 0.953 0.956 0.946 0.936 0.936 0.936 4 0.948 0.942 0.938 0.933 0.9	6 0.937
5 0.938 0.938 0.936 0.931 0.940 0.942 6 0.937 0.938 0.933 0.933 0.9	0.940
$M_{\infty} = \frac{1.75}{\alpha} = \frac{0.0^{\circ}}{0.0^{\circ}} = \frac{0.451}{0.451} = \frac{m_{bp}/m_{\infty}}{m_{\infty}} = \frac{0.451}{0.451} = \frac{m_{bp}/m_{\infty}}{m_{\infty}} = \frac{0.451}{0.451} = \frac{m_{bp}/m_{\infty}}{m_{\infty}} = \frac{0.451}{0.451} = \frac{m_{bp}/m_{\infty}}{m_{\infty}} = \frac{0.451}{0.451} = \frac{m_{bp}/m_{\infty}}{0.451} = \frac{0.451}{0.451} = \frac{m_{bp}/m_{\infty}}{0.451} = \frac{0.451}{0.451} = \frac{0.451}{0.451}$.03
$\bar{p}_{t_2}/p_{t_{\infty}} = 0.915$ $m_{b1}/m_{\infty} = 0.121$ $\Delta p_{t_2} = 0.092$ $p_2/p_{\infty} = 0.092$	4.8
RAKE TUBE NO. RAKE TUBE NO.	
NO. 1 2 3 4 5 6 NO. 1 2 3 4 5	6
1 0.880 0.893 0.918 0.942 0.963 0.956 2 0.900 0.900 0.896 0.917 0.9	0 0.896
3 0.897 0.906 0.907 0.912 0.925 0.938 4 0.893 0.893 0.899 0.912 0.9	7 0.942
5 0.879 0.884 0.900 0.919 0.954 0.963 6 0.882 0.886 0.907 0.928 0.9	0 0.948

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued Bleed exit setting B

$M_{\infty} =$	1.	75	_ α =	0.	0°	m _o	$/m_{\infty} = 1$	0.45	1	1	m _{bp} /m∞	= 0.	10
₱t₂	/p _t =	0.958	m _b	$_1/m_\infty =$	0.140	_ △	p _{t2} = -	0.04	9		p_2/p_{α}	, = <u>5.</u>	1
RAKE			TUBE	NO.		6	RAKE		. –	TUBE			
NO.	1 _]	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.938	0.959	0.966	0.966	0.967	0.960	2	0.941	0.955	0.952	0.972	0.982	0.940
3	0.943	0.958	0.963	0.971	0.980	0.981	4	0.941	0.940	0.951	0.960	0.968	0.972
5	0.935	0.942	0.954	0.958	0.968	0.967	6	0.947	0.959	0.963	0.967	0.962	0.955
M _∞ :	=1	• 75	_ α =	·	0.00	m _O	$/m_{\infty} =$	0.4	51		m _{bp} /m _c	_∞ = 0.0	9
₱ _{t2}	$/p_{t_{\infty}} =$	0.932	_ m _b	$_{1}/m_{\infty}$ =	0.132	<u>.</u> Δ:	p _{t2} = .	0.	062		p ₂ /p ₀	∞ = <u> </u>	.0
RAKE			TUBE	NO.			RAKE			TUBE			
NO.	1 1	2	_3	NO.	5	6	NO.	1	2	3	4	5	6
1	0.932	0.934	0.929	0.921	0.930	0.937	2	0.950	0.946	0.930	0.933	0.932	0.892
3	0.945	0.949	0.944	0.935	0.931	0.933	4	0.940	0.934	0.934	0.929	0.927	0.932
5	0.929	0.931	0.930	0.924	0.928	0.933	6	0.928	0.932	0.929	0.925	0.925	0.931
M _∞ =	1	.75	<u>α</u> =		0.0°	m _O	$/m_{\infty} =$	0.	45 <u>1</u>		m _{bp} /m	∞ = <u>0</u>	.08
	$p_{t_{\infty}} = \frac{1}{\sqrt{p_{t_{\infty}}}}$												
$ar{\mathtt{p}}_{t_{z}}$	$p_{t_{\infty}} =$	0,909	m _b	$_{ m l}/{ m m}_{\infty}$ =	0.125	Δ;	p _{t2} =	0. <u>0</u>	62		. p ₂ /p	_∞ = 4	.8
$ar{\mathtt{p}}_{t_{z}}$	$p_{t_{\infty}} =$	0,909	m _b	$_{ m l}/{ m m}_{\infty}$ =	0.125	Δ;	p _{t2} =	0. <u>0</u>	62		. p ₂ /p	_∞ = 4	.8
RAKE	/p _t =	0.909 -	^m b. TUBE	$1/m_{\infty} = 1$ NO.	0.125	6	P _{t2} = RAKE	0.0	2	TUBE	P ₂ /P ₀	_∞ = _4	.8
Ptz	/p _t =	0.909 2 0.900		$1/m_{\infty} = 1/m_{\infty}$ NO. 4 0.902	0.125 5 0.918	6 0.939	Pt ₂ = RAKE NO.	0.0	2	TUBE 3 0.903	p ₂ /p ₃ NO. 4 0.911	_∞ = _4	6
RAKE NO.	/p _t =	0.909 2 0.900 0.916	TUBE 3 0.905 0.916	$1/m_{\infty} = 1$ NO. 4 0.902 0.913	0.125 5 0.918 0.917	6 0.939 0.928	Pt2 = RAKE NO. 2	0. <u>0</u> 1 0.910 0.905	62 2 0.912 0.903	TUBE 3 0.903	P ₂ /P ₀ NO. 4 0.911 0.910	5 0.920 0.916	.8 6 0.893 0.930
RAKE NO.	/p _{t_∞} =	0.909 2 0.900 0.916 0.900	TUBE 3 0.905 0.916 0.904	$1/m_{\infty} = 1$ NO. 4 0.902 0.913 0.904	0.125 5 0.918 0.917 0.916	6 0.939 0.928 0.930	RAKE NO.	0.0 1 0.910 0.905 0.883	62 0.912 0.903 0.893	TUBE 3 0.903 0.909 0.898	P ₂ /P ₀ NO. 4 0.911 0.910 0.903	$_{\infty} = 4$ 5 0.920 0.916 0.914	.8 6 0.893 0.930 0.931
RAKE NO.	/p _t =	0.909 2 0.900 0.916 0.900	TUBE 3 0.905 0.916 0.904 α =	$1/m_{\infty} = 1$ NO. 4 0.902 0.913 0.904	0.125 0.918 0.917 0.916 0.0°	6 0.939 0.928 0.930 m _o	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.0 1 0.910 0.905 0.883	62 0.912 0.903 0.893 451	TUBE 3 0.903 0.909 0.898	NO. 4 0.911 0.910 0.903 m _{bp} /m	$ \begin{array}{c} 5 \\ 0.920 \\ 0.916 \\ 0.914 \\ \infty = 0. \end{array} $.8 6 0.893 0.930 0.931
RAKE NO. 1 3 5 M _∞ =	/p _t =	0.909 2 0.900 0.916 0.900	TUBE 3 0.905 0.916 0.904 α =	$1/m_{\infty} =$ NO. 4 0.902 0.913 0.904	0.125 0.918 0.917 0.916 0.0°	6 0.939 0.928 0.930 m _o	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.0 1 0.910 0.905 0.883	62 0.912 0.903 0.893 451	TUBE 3 0.903 0.909 0.898	P ₂ /P ₀ NO. 4 0.911 0.910 0.903 m _{bp} /m	$ \begin{array}{c} 5 \\ 0.920 \\ 0.916 \\ 0.914 \\ \infty = 0. \end{array} $.8 6 0.893 0.930 0.931
RAKE NO.	/p _t =	0.909 2 0.900 0.916 0.900	TUBE 3 0.905 0.916 0.904 α =	$1/m_{\infty} =$ NO. 4 0.902 0.913 0.904	0.125 0.918 0.917 0.916 0.0°	6 0.939 0.928 0.930 m _o	$P_{t_2} = \frac{1}{RAKE}$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} = \frac{1}{RAKE}$ $P_{t_2} = \frac{1}{RAKE}$	0.0 1 0.910 0.905 0.883	62 0.912 0.903 0.893 451	TUBE 3 0.903 0.909 0.898	P ₂ /P ₀ NO. 4 0.911 0.910 0.903 m _{bp} /m	$ \begin{array}{c} 5 \\ 0.920 \\ 0.916 \\ 0.914 \\ \infty = 0. \end{array} $.8 6 0.893 0.930 0.931
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE	/p _t = 1. /p _t = 1.	0.909 0.900 0.916 0.900 75 0.947	TUBE 3 0.905 0.916 0.904 α =mb TUBE 3	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.125 0.918 0.917 0.916 0.0° 0.139	6 0.939 0.928 0.930 m _o	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO.	0.0 1 0.910 0.905 0.883 0.	62 0.912 0.903 0.893 451	TUBE 3 0.903 0.909 0.898 TUBE	P ₂ /P ₀ NO. 14 0.911 0.910 0.903 m _{bp} /m P ₂ /F NO.	$ \begin{array}{c} 5 \\ 0.920 \\ 0.916 \\ 0.914 \\ \infty = 0. \\ \infty = 5 \end{array} $.8 6 0.893 0.930 0.931 18 .1
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO.	/pt _∞ = 1	0.909 0.900 0.916 0.900 75 0.947	TUBE 3 0.905 0.916 0.904 α = TUBE 3 0.950	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.902 0.913 0.904 $1/m_{\infty} = \frac{1}{m_{\infty}}$ 0.950	0.125 5 0.918 0.917 0.916 0.0° 0.139	6 0.939 0.928 0.930 m _o	$p_{t_2} =$ RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO. 2	0.0 1 0.910 0.905 0.883 0.	62 0.912 0.903 0.893 451 .041 2 0.946	TUBE 0.903 0.909 0.898 TUBE 3 0.944	P ₂ /P ₀ NO. 4 0.911 0.910 0.903 m _{bp} /m P ₂ /F NO. 4 0.962	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.8 0.893 0.930 0.931 18

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

$M_{\infty} =$	1.75	α:	=	0.0°	m,	_O /m _∞ =	·	0.451		m _{bp} /m	∞ =	0.18
$\overline{p}_{\mathrm{t}_2}/p$	t _∞ = 0.93	9 m	$_{ m bl}/{ m m}_{\infty}$	= 0.13	5 /	Δp _{t2} =	=	.054		p ₂ /p) _∞ =	5.0
1 0. 3 0. 5 0.	1 2 .926 0.931 .929 0.957	0.939	0.936	0.942	0.941 0.953 0.941	2 4 6	0.929 0.926 0.928	0.950	0.947	0.958	0.95	7 0.910 0 0.945 7 0.939
$M_{\infty} = -$	1.75	α:	=	0.00	m_{C}	$m_{\infty} =$	0	.451		m _{bp} /n	a _∞ = _C	.17
	t _∞ = 0.92											
1 0. 3 0.	1 2 912 0.917 943 0.950 910 0.915	0.924	0.921	0.928	0.926	2	0.922	0.944	0.934	0.942	0.93	7 0.890 8 0.928
v												
_M ∞ == -	1.75	α =	:(0.0°	m _C	$m_{\infty} =$	0.4	451		m _{bp} /m	l _∞ =	0.31
	1.75 $t_{\infty} = 0.940$											
F _{t.2} /p. RAKE NO. 1 0. 3 0. 5 0.	$\frac{1}{2}$ = 0.940 $\frac{1}{2}$ = 0.938 $\frac{936}{935}$ 0.939 $\frac{936}{936}$ 0.939	TUBE 3 0.942 0.940 0.941	$1/m_{\infty} = 1/m_{\infty} = 1/m_{\infty}$ NO. $1/4$ 0.943 0.943	0.138 5 0.951 0.951 0.938	6 0.955 0.957 0.932	Pt ₂ = RAKE NO.	0.0 1 0.938 0.939 0.938	0.942 0.936	TUBE 3 0.933	p ₂ /p NO. 4 0.947 0.937	ω =	5.1 6 0.919 0.934
F _{t.2} /p. RAKE NO. 1 0. 3 0. 5 0.	$l_{\infty} = 0.940$ $l_{\infty} = 0.940$ $l_{\infty} = 0.930$ $l_{\infty} = 0.938$ $l_{\infty} = 0.939$	TUBE 3 0.942 0.940 0.941	$1/m_{\infty} = 1/m_{\infty} = 1/m_{\infty}$ NO. $1/4$ 0.943 0.943	0.138 5 0.951 0.951 0.938	6 0.955 0.957 0.932	Pt ₂ = RAKE NO.	0.0 1 0.938 0.939 0.938	0.942 0.936	TUBE 3 0.933 0.940 0.939	p ₂ /p NO. 4 0.947 0.937	∞ =	5.1 6 0.919 0.934 0.937
$\bar{p}_{t,2}/p$. RAKE NO. 1 0. 5 0.	$\frac{1}{2}$ = 0.940 $\frac{1}{2}$ = 0.938 $\frac{936}{935}$ 0.939 $\frac{936}{936}$ 0.939	TUBE 3 0.942 0.940 0.941 $\alpha =$	$1/m_{\infty} = 1/m_{\infty} = 1/m_{\infty}$ NO. $1/4$ 0.943 0.943 0.937	0.138 0.951 0.951 0.938	β Δ 6 0.955 0.957 0.932	$P_{t_2} =$ RAKE NO. 2 4 6	0.0 1 0.938 0.939 0.938	0.942	TUBE 3 0.933 0.940 0.939	P ₂ /P NO. 0.947 0.947 0.941 m _{bp} /m	∞ =	5.1 [6] [0.919] [0.934] [0.937]
$\bar{p}_{t,2}/p$. RAKE NO. 1 0. 3 0. 5 0. $\bar{p}_{t,2}/p_t$ RAKE	$\frac{1}{2} = 0.940$ $\frac{1}{936} = 0.938$ $\frac{935}{936} = 0.939$ $\frac{936}{1.75} = 0.939$	TUBE 3 0.942 0.940 0.941 $\alpha =$	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.138 0.951 0.951 0.938	6 0.955 0.957 0.932 mo	$P_{t_2} =$ RAKE NO. 2 4 6 $m_{\infty} =$ RAKE	0.0 1 0.938 0.939 0.938	0.942	TUBE 3 0.933 0.940 0.939	P ₂ /p NO. NO. NO. P ₂ /p NO.	% =	5.1 [6] [0.919] [0.934] [0.937]
$\bar{p}_{t,2}/p_{t}$ RAKE NO. 1 0. 3 0. 5 0. $M_{\infty} = -\frac{\bar{p}_{t,2}}{p_{t}}$ RAKE NO. 1 0.	$\frac{1}{2} = 0.940$ $\frac{1}{936} = 0.938$ $\frac{935}{936} = 0.939$ $\frac{936}{1.75} = 0.939$	TUBE 3 0.942 0.940 0.941 α = TUBE 3 0.984	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.138 0.951 0.951 0.938 0.136	6 0.955 0.957 0.932 ωον Δ	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2	0.0 1 0.938 0.939 0.938	0.40 0.942 0.936 0.939 135	TUBE 3 0.939 TUBE 3 0.972	P ₂ /p NO. 0.947 0.937 0.941 m _{bp} /m P ₂ /p NO.	0.935 0.940 0.935 0.940	5.1 [6] [0.919] [0.934] [0.937] [0.937]

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE FRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued Bleed exit setting B

Table 2.- SUPERSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Concluded Bleed exit setting B

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M _∞ =	=	1.55	α :	=2	.0°	m _c	$_{\rm O}/{\rm m}_{\infty}$ =				m _{bp} /m _c	» =	0.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	₹	₂ /p _t ,	0.96	8_ m	$_{\rm bl}/{\rm m_{\infty}}$	= 0.12	<u>6</u>	12 t ₂ =		0.061	_	p ₂ /p	∞ = <u> </u>	3.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				TUBI	E NO.		· · ·	RAKE			TUB	E NO.		1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NO.	1	2	3	4	5	6	NO.	1	2	3	<u></u>	5	[6]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.966	0.978	0.985	<u> </u>	0.999	1.000	2	0.972	0.977	0.969	0.992	0.997	0.972
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3						+	<u> </u>			1	1	1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	0.941	0.944	0.952	0.947	0.961	0.965	6	0.961	0.971	0.978	0.987	0.992	0.988
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	${\rm M}_{\infty}$	=	1.55	_ α :	=	5.0°	m _O	$m_{\infty} =$		· -		m _{bp} /m	l∞ =	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\bar{p}_{t_2}	$p_{t_{\infty}} =$	0.933	m _b	$_{\rm ol}/{\rm m}_{\infty}$ =	0.11	<u> </u>	p _{t2} =	0.14	1		p ₂ /p	o _∞ =	3.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	RAKE			TUBE	E NO.		-	RAKE	9		TUBI	E NO.]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.932	0.927	0.924	0.906	0.921	0.904	4	0.904	0.899	0.909	0.911	0.908	0.899
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	0.926	0.916	0.921	0.910	0.910	0.893	6	0.961	0.959	0.964	0.970	0.953	0.900
RAKE NO. TUBE NO. RAKE NO. RAKE NO. TUBE NO. RAKE NO. TUBE NO. TUBE NO. NO. 1 2 3 4 5 6 1 0.960 0.976 0.990 0.990 0.990 0.999 0.999 0.999 0.990 0.990 0.900 0.903 0.911 0.914 0.915 0.886 0.899 0.899 0.899 0.900 0.903 0.903 0.902 0.896 0.911 0.914 0.914 0.914 0.945 0.945 0.946 0.953 0.958 0.962 0.895 0.897 0.902 0.896 0.911 0.914 0.914 0.914 0.945 0.945 0.946 0.953 0.958 0.962 mbp/mo =	M _∞ =	=	. 55	_ α =	·	5.0°	m _O	$m_{\infty} =$				m _{bp} /m	_∞ =C	0.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ar{\mathtt{p}}_{t_{z}}$	$p_{t_{\infty}} =$	0.931	m _b	$_1/m_\infty$ =	0.113	<u> </u>	p _{t2} = .	0.12	1		_ p ₂ /p	∞ = <u> </u>	3.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RAKE			TUBE	NO.			RAKE			TUBE	NO.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						i i		i	Īi		i	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11									1	ī —	ĵ	î - i
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	II .							1		Ť	Ť-	1	† 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
RAKE NO. TUBE NO. RAKE NO. TUBE NO. 1 2 3 4 5 6 NO. 1 2 3 4 5 6 1 - - - - - - - - - - 3 - - - - - - - - - - - -														
NO. 1 2 3 4 5 6 NO. 1 2 3 4 5 6 1 2 3 4 5 6 3 4 4 4 4 4	p _{t2}	/p _t =		b	1/™∞ =			^p t2 -				P ₂ / P	∞ ⁻ —	
1 2 3 4 9 0 1 2 3 4 9 0 1 2 3 4 9 0 1 2 3 4 9 0 1 2 3 4 9 0 1 2 3 4 9 0 1 1 2 3 4 9 0 1 1 2 3 1 4 9 0 1 1 2 1 3 1 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				TUBE	NO.						TUBE	NO.		
3 4	NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
	lı							2						
5 6	<u> </u>	 												
								4						

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt_ ∞

M _∞ =	0	.6	<u>α</u> =	0	.0°	m _{1,}	/m _∞ = _	0.3	29		$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	= _0	.065
				R) _{lip} =						B1	eed	g =	Open
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.947	0.956	0.965	0.970	0.965	0.918	2	0.949	0.954	0.965	0.977	0.959	0.888
3	0.943	0.951	0.967	0.973	0.966	0.912	4	0.944	0.951	0.963	0.974	0.968	0.926
5	0.946	0.951	0.964	0.973	0.965	0.914	6	0.949	0.957	0.967	0.974	0.957	0.906
M _∞ :	=0	.6	_ α =		0°	m _i	/m _∞ = .	0.28	7		$\mathtt{C}_{\mathrm{D}_{\!8}}$	a = 0	.091
₱ _{t₂}	/p _t =	0.987	_ (x/:	R) _{lip} =	4.18	<u>0</u> Δ:	p _{t2} = -	0.035		Bi ex i t	leed settin	g = 0	pen
RAKE			TUBE	NO.	~		RAKE			TUBE	NO.		
NO.	1	2	3	NO.	5	, 6	NO.	1	2	3	4	5	6
1	0.976	0.984	0.993	0.999	0.999	0.976	2	0.981	0.991	0.996	1.001	0.994	0.940
_	π	ī	i	0.996	ŧ .	;		0.980	•		<u>. </u>		
5	0.980	0.986	0.993	0.997	0.999	0.976	6	0.978	0.985	0.992	0.996	0.992	0.966
1 /	ш	1				L		Ц	·	<u> </u>			0.700
M _∞ =	0	.6	_ α =		0°	m _i	/m _∞ =	0.33	6	В:	C _{D;}	a = 0	.076
M _∞ =	0	.6	_ α =		0°	m _i	/m _∞ =	0.33	6	В:	C _{D;}	a = 0	.076
M _∞ =	. <u>0</u> /p _t =	.6	_ α =	0. R) _{lip} =	0°	m _i	/m _∞ =	0.33	6	В:	C _{D,} leed settin	a = 0	.076
$M_{\infty} = \bar{p}_{t_2}$	= <u>0</u> /p _t =	0.961	α = (x/:	0. R) _{lip} =	0° 4.03	m i	$m_{\infty} = \frac{1}{2}$ $p_{t_2} = \frac{1}{2}$ RAKE	0.33	6	B: exit	C _{D,} leed settin	g =	.076
M _∞ = \bar{p}_{t_2} RAKE NO.	=	0.961	α =(x/)	R) _{lip} =	0° 4.03	ni_06	$m_{\infty} = 1$ $p_{t_2} = 1$ RAKE	0.33	2	E: exit TUBE	C _D leed settin	g =	.076 Open6
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	p _t = 0	.6 0.961 2 0.957	α = (x/) TUBE 3 0.972	0. R) _{lip} =	0° 4.03 5 0.980		$m_{\infty} = 1$ $p_{t_2} = 1$ $m_{0} = 1$ $m_{0} = 1$	0.33	6 2 0.963	Exit TUBE	C _D leed settin	g =	.076 Open 6 0.883
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	p _t = 0 p _t = 1 0.946 0.953	.6 0.961 2 0.957 0.958	α =(x/ TUBE30.9720.973	0. R) _{lip} = NO. 4	0° 4.03 5 0.980 0.975	0	/m _∞ = Pt ₂ = RAKE NO. 2	0.33 0.090 1 0.952	2 0.963 0.958	TUBE 3 0.980 0.973	C _{D,} leed settin NO. 4 0.993	g =	.076 Open 6 0.883 0.931
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	p _t = 0 /p _t = 1 0.946 0.953 0.951	.6 0.961 2 0.957 0.958 0.960	α =(x/ TUBE30.9720.9730.977	0. R) _{lip} = NO. 4 0.987 0.989	5 0.980 0.980		$m_{\infty} = \frac{1}{2}$ RAKE NO. 2	0.33 0.090 1 0.952 0.948 0.951	2 0.963 0.958 0.966	TUBE 3 0.980 0.973 0.983	C _D , leed settin NO. 4 0.993 0.989 0.992	g =	.076 Open 6 0.883 0.931 0.907
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	p _t = 0 /p _t = 1 0.946 0.953 0.951	.6 0.961 2 0.957 0.958 0.960	$\alpha = \frac{\alpha}{(x/3)^2}$ TUBE 3 0.972 0.973 0.977	0. R) _{lip} = NO. 4 0.987 0.989 0.991	5 0.980 0.975 0.980		$m_{\infty} = 1$ $p_{t_2} = 1$ $m_{\infty} = 1$ $m_{\infty} = 1$ $m_{\infty} = 1$ $m_{\infty} = 1$	0.33 0.090 1 0.952 0.948 0.951	2 0.963 0.958 0.966	TUBE 3 0.980 0.973 0.983	C _D leed settin NO. 4 0.993 0.989	5 0.959 0.979 0.979	.076 Open 6 0.883 0.931 0.907
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	p _t = 0 p _t = 1 0.946 0.953 0.951	.6 0.961 2 0.957 0.958 0.960	$\alpha = \frac{\alpha}{(x/3)^2}$ TUBE 3 0.972 0.973 0.977	0. R) _{lip} = NO. 4 0.987 0.989 0.991 R) _{lip} =	5 0.980 0.975 0.980		$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ RAKE	0.33 0.090 1 0.952 0.948 0.951	2 0.963 0.958 0.966	TUBE 3 0.980 0.973 0.983	C _{D_i} leed settin NO. 4 0.993 0.989 0.992 C _{D_i} leed settin	5 0.959 0.979 0.979	.076 Open 6 0.883 0.931 0.907
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	p _t = 0 p _t = 1 0.946 0.953 0.951	.6 0.961 2 0.957 0.958 0.960	α = (x/) TUBE 3 0.972 0.973 0.977 α = (x/)	0. R) _{lip} = NO. 4 0.987 0.989 0.991 R) _{lip} =	5 0.980 0.975 0.980		$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ RAME NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.33 0.090 1 0.952 0.948 0.951	2 0.963 0.958 0.966	TUBE 3 0.980 0.973 0.983	C _{D_i} leed settin NO. 4 0.993 0.989 0.992 C _{D_i} leed settin	5 0.959 0.979 0.979	.076 Open 6 0.883 0.931 0.907
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	0 p _{t_w} = 1 0.946 0.953 0.951 0.951	.6 0.961 2 0.957 0.958 0.960 .6 0.990	α = (x/ TUBE 3 0.972 0.973 0.977 α = (x/ TUBE 3	0. R) _{lip} = NO. 4 0.987 0.989 0.991 R) _{lip} =	0° 4.03 5 0.980 0.975 0.980 0° 4.03	m ₁ 0 △ 0.922 0.912 0.914 m ₁ 0 △	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.33 0.090 1 0.952 0.948 0.951 0.283 0.036	2 0.963 0.958 0.966	TUBE 3 0.980 0.973 0.983 Bexit	CD, leed settin NO. 4 0.993 0.989 0.992 CD, leed settin	g =	.076 Open 6 0.883 0.931 0.907 106 pen 6
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	1 0.946 0.953 0.951 0.983 0.983	.6 0.961 2 0.957 0.958 0.960 .6 0.990	α =(x/ TUBE30.9720.973α =(x/ TUBE30.999	0. R) _{lip} = NO. 4 0.987 0.989 0.991 R) _{lip} = NO. 4	0° 4.03 5 0.980 0° 4.03 5 1.000		$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.33 0.090 1 0.952 0.948 0.951 0.283 0.036	2 0.963 0.958 0.966	TUBE 3 0.980 0.973 0.983 Exit TUBE 3	CDaleed settin	5 0.959 0.979 0.979 a = 0. 0.994	.076 Open 6 0.883 0.931 0.907 106 pen 6 0.943

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t_2}/p_{\rm t_\infty}$ -Continued

M_{∞}	=	0.6	_ α:	=	.0°	m _:	$_{\rm L}/{\rm m}_{\infty}$ =	0.33	19		$\mathtt{c}_{\mathtt{D}_{\mathtt{s}}}$		0.098
p t	₂ /p _t ,	0.966	(x,	/R) _{lip}	=_3.88	80	Δp _{t2} =	0.091		exit	leed settin	ıg =	Open
RAKE NO.	0.956	0.975	0.991	0.996 0.990	0.980	0.918	2	0.958	0.982	0.995	0.996	0.958	$\begin{bmatrix} 0.885 \\ 0.929 \end{bmatrix}$
5 M _∞			<u> </u>	-				•		÷ .	$^{ m C_D}$	1	0.143
₽ _{t;}	₂ /p _t _∞ =	0.99	<u>1</u> (x/	R) _{lip} =	3.8	<u>80</u> \triangle	p _{t2} =	0.03	5	exit	settin	ng =	0pen
RAKE NO. 1 3 5	0.985	0.994	1.001	1.001	0.999	0.978 0.971	2	0.987 0.985	0.997 0.991	1.000 0.999	NO. 4 1.000 1.000 1.001	0.993 1.000	0.944
										B	C _{D,} leed settin		
RAKE NO.	1 0.959 0.939	2 0.967 0.967	TUBE 3 0.978 0.953	R) _{lip} = NO. 4 0.986 0.960	4.180 5 0.979 0.957	ο Δ 6 0.915 0.911	Pt ₂ = RAKE NO.	0.092 1 0.957 0.940	2 0.962 0.942	TUBE 3 0.976 0.950	NO. NO. 0.985	g =	Open 6
Pt: RAKE NO. 1 3 5 M _∞ =	1 0.959 0.939 0.940	2 0.967 0.967 0.943	TUBE 3 0.978 0.953 0.954 α =	R) _{lip} = NO. 0.986 0.960 0.966	4.180 5 0.979 0.957 0.958	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 $\frac{1}{4}$ 6 $m_{\infty} = \frac{1}{2}$	0.093 1 0.957 0.940 0.955 0.287	0.962 0.942 0.959	TUBE 3 0.976 0.950 0.972	NO. NO. 0.985 0.987 0.981	g =	Open 6 0.882 0.921 0.899
RAKE NO. 1 3 5 M _{\infty} = \$\bar{p}_{t_2}\$ RAKE	1 0.959 0.939 0.940	2 0.967 0.943 0.946	TUBE 3 0.978 0.953 0.954 α =	R) _{lip} = NO. 4 0.986 0.960 0.966 R) _{lip} =	4.180 5 0.979 0.957 0.958	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE	0.092 1 0.957 0.940 0.955	0.962 0.942 0.959	TUBE 3 0.976 0.950 0.972	NO. NO. 0.985 0.957 0.981 CDa leed settin	g =	Open 6 0.882 0.921 0.899
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{tz}\$	1 0.959 0.939 0.940 0.6 /pt=	2 0.967 0.967 0.943	TUBE 3 0.978 0.953 0.954 α = 0 (x/ TUBE 3	R) _{lip} = NO. 0.986 0.960 0.966 R) _{lip} = NO.	4.180 5 0.979 0.957 0.958 2.0° 4.180	0.915 0.915 0.915 	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO.	0.092 1 0.957 0.940 0.955 0.287	2 0.962 0.942 0.959	TUBE 3 0.976 0.950 0.972 B exit TUBE	NO. NO. 0.985 0.957 0.981 CDa leed settin	g =	Open 6 0.882 0.921 0.899

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_t / p_{t_{\infty}}$ - Continued

$M_{\infty} =$	0.	6	_ α =	2.0)°	m ₁	/m _∞ = _	0.33	36		$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	=	<u>-</u>
₱ _{t2}	$/p_{t_{\infty}} =$	0.960	_ (x/	R) _{lip} =	4.03	<u>30</u> Δ	p _{t2} =_	0.096	5	Bl exit s	.eed sett in @	g = <u>Op</u>	en
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	lıļ	2	3]	4	5	6	NO.	1	2	3	4	5	6
] 1]	0.963	0.980	0.995	0.999	0.987	0.916	2	0.970	0.982	0.993	0.996	0.961	0.884
3	0.946	0.956	0.965	0.977	0.964	0.913	4	0.939	0.944	0.952	0.966	0.961	0.934
5	0.943	0.949	0.966	0.982	0.972	0.913	6	0.963	0.979	0.992	0.997	0.975	0.901
M _∞ :	= 0.6	5	_ α =	. 2.	.0°	m _i	$/m_{\infty} = 1$	0.283	3		$\mathtt{C}_{\mathrm{D}_{\!2}}$	a = 	
7 ,	/p _t =	0.99	ı (x/i	R) =	4.030) ^	n - (0.033		B: ex i t	leed settin		
Pt2	, et∞ _			Tip	_ +,050	<u> </u>	Pt2 = -						урен
RAKE			TUBE				RAKE	51		TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2_	3	4	5	6
1	0.986	0.995	1.000	1.000	1.000	0.980	2	0.987	0.995	1.000	1.001	0.999	0.946
3	0.987	0.992	1.001	1.000	0.998	0.969	14	0.982	0.988	0.998	1.001	1.000	0.984
5	0.986	0.991	1.000	1.000	0.999	0.975	6	0.989	0.996	1.001	1.001	0.995	0.968
M _∞ =	0.	. 6	_ α =	: 5	5.0°	_ mi	/m _∞ =	0.329)		c_{D}	a =	
										B	leed		
	₂ /p _t , =	0.948	_ (x/:	R) _{lip} =	4.180	<u>)</u>	p _{t2} = .	0.101		ex i t	leed sett i n		
p̄ _{t₂}	₂ /p _t , =	0.948	_ (x/:	R) _{lip} =	4.180	<u>)</u>	p _{t2} = .	0.101		ex i t	leed sett i n	g = <u>Or</u>	oen
Pt ₂	p _t _∞ =	0.948	(x/: TUBE 3	R) _{lip} =	4.18 0	<u> </u>	Pt ₂ = RAKE	0.101	2	exit TUBE	NO.	g = <u>Or</u>	en 6
RAKE NO.	p _t _∞ =	0.948 2 0.992	TUBE 3 0.999	R) _{lip} =	4.180 5 0.988	Δ60.906	Pt ₂ = RAKE	0.101	2	TUBE 3 0.975	NO.	g = Or 5 0.957	6 0.878
RAKE NO.	p _t _∞ =	0.948 2 0.992 0.937	TUBE 3 0.999 0.938	R) _{lip} = NO. 4 1.000 0.944	5 0.988 0.937	6 0.906 0.904	Pt ₂ = RAKE NO.	0.101 1 0.969 0.929	2 0.971 0.928	TUBE 3 0.975 0.936	NO. 4 0.982	g = Or 5 0.957 0.933	6 0.878 0.910
RAKE NO.	p _t _∞ =	0.948 2 0.992 0.937	TUBE 3 0.999 0.938	R) _{lip} = NO. 4 1.000 0.944	5 0.988 0.937	6 0.906 0.904	Pt ₂ = RAKE NO.	0.101 1 0.969 0.929	2 0.971 0.928	TUBE 3 0.975 0.936	NO. 4 0.982	g = Or 5 0.957 0.933	6 0.878 0.910
RAKE NO.	p _t _∞ =	0.948 2 0.992 0.937 0.941	TUBE 3 0.999 0.938 0.942	R) _{lip} = NO. 1.000 0.944 0.947	4.180 5 0.988 0.937 0.941	6 0.906 0.904 0.912	Pt ₂ = RAKE NO. 2 4	0.101 1 0.969 0.929 0.967	2 0.971 0.928 0.968	TUBE 3 0.975 0.936 0.978	NO. 4 0.982 0.941 0.980	g = Or 5 0.957 0.933	6 0.878 0.910 0.893
RAKE NO. 1 3 M_{∞}	1 0.977 0.937 0.939 0.	0.948 2 0.992 0.937 0.941	TUBE 3 0.999 0.938 0.942 α =	R) _{lip} = NO. 4 1.000 0.944 0.947	5 0.988 0.937 0.941	6 0.906 0.904 0.912	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.101 1 0.969 0.929 0.967 0.287	2 0.971 0.928 0.968	TUBE 3 0.975 0.936 0.978	NO. 4 0.982 0.941 0.980 CD	g = Or 5 0.957 0.933 0.958	6 0.878 0.910 0.893
RAKE NO. 1 3 5 M _∞ =	1 0.977 0.937 0.939 0.939	0.948 2 0.992 0.937 0.941	TUBE 3 0.999 0.938 0.942 \[\alpha = \frac{1}{2} \text{(x/)} \]	R) _{lip} = NO. 1.000 0.944 0.947 5. (R) _{lip} =	5 0.988 0.937 0.941	6 0.906 0.904 0.912	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{m_{\infty}} = \frac{1}{2}$	0.101 1 0.969 0.929 0.967 0.287	2 0.971 0.928 0.968	TUBE 3 0.975 0.936 0.978	NO. 4 0.982 0.941 0.980 CD	g = Or 5 0.957 0.933 0.958	6 0.878 0.910 0.893
RAKE NO. 1 3 M_{∞}	1 0.977 0.937 0.939 0.939	0.948 2 0.992 0.937 0.941 6	TUBE 3 0.999 0.938 0.942 α = 1 (x/	R) _{lip} = NO. 1.000 0.944 0.947 5. (R) _{lip} =	5 0.988 0.937 0.941	6 0.906 0.904 0.912	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.101 1 0.969 0.929 0.967 0.287	2 0.971 0.928 0.968	TUBE 3 0.975 0.936 0.978	NO. 4 0.982 0.941 0.980 CD	5 0.957 0.933 0.958	6 0.878 0.910 0.893
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO.	1 0.977 0.937 0.939 0.94	0.948 2 0.992 0.937 0.941 6 0.983	TUBE 3 0.999 0.938 0.942 α = 1 (x/	R) _{lip} = NO. 4 1.000 0.944 0.947 5 (R) _{lip} = NO.	5 0.988 0.937 0.941 0.0°	6 0.906 0.904 0.912 — ^m i	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.101 1 0.969 0.929 0.967 0.287	2 0.971 0.928 0.968	TUBE 3 0.975 0.936 0.978 Bexit TUBE	NO. 4 0.982 0.941 0.980 CDated settir	g = _Or 5 0.957 0.933 0.958 a =	6 0.878 0.910 0.893
\overline{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1	1 0.977 0.937 0.939	0.948 2 0.992 0.937 0.941 6 0.989	TUBE 3 0.999 0.938 0.942 α = 1 (x/ TUBE 3 0.996	R) _{lip} = NO. 4 1.000 0.944 0.947 5. (R) _{lip} = NO. 4 1.000	4.180 5 0.988 0.937 0.941 .0° 4.180	6 0.906 0.912 	$P_{t_{2}} = \frac{1}{2}$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} = \frac{1}{2}$ $RAKE$ $NO.$ 2	0.101 1 0.969 0.929 0.967 0.287 0.04	2 0.971 0.928 0.968 7 43 2 0.998	TUBE 3 0.975 0.936 0.978 Bexit TUBE 3	NO. 4 0.982 0.941 0.980 CD leed settir	5 0.957 0.933 0.958 =	6 0.878 0.910 0.893
Pt₂ RAKE NO. 1 3 5 M _∞ = Pt₂ RAKE NO. 1 3	1 0.977 0.937 0.939	0.948 2 0.992 0.937 0.941 6 0.989 0.989	TUBE 3 0.999 0.938 0.942 \[\alpha = \text{1} \text{ (x/} \text{ TUBE} \] TUBE 3 0.996 0.979	R) _{lip} = NO. 4 1.000 0.944 0.947 5. (R) _{lip} = NO. 4 1.000 0.980	4.180 5 0.988 0.937 0.941 0° 4.180 5 0.999 0.975	6 0.906 0.904 0.912 — ^m 1 0 6 0.969	Pt2 = RAKE NO. 2	0.101 1 0.969 0.929 0.967 0.287 0.04 1 0.987 0.966	2 0.971 0.928 0.968 7 43 2 0.998 0.967	TUBE 3 0.975 0.936 0.978 Bexit TUBE 3 0.998	NO. 4 0.982 0.941 0.980 CDated settir NO. 4 1.000 0.970	g = _Or 5 0.957 0.933 0.958 a =	6 0.878 0.910 0.893 Open 6 0.934 0.965

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued

$M_{\infty} =$		0.6	_ α =	<u> </u>	.0°	m _j	$/m_{\infty} =$	0.33	6		$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	=	
								0.11					
RAKE			TUBE				RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
1	0.962	0.998	1.000	1.000	0.991	0.909	2	0.981	0.995	0.995	0.996	0.961	0.874
3	0.953	0.946	0.947	0.949	0.946	0.910	4	0.931	0.932	0.939	0.948	0.944	0.922
5	0.955	0.947	0.946	0.952	0.948	0.917	6	0.985	0.993	0.996	0.995	0.967	0.890
M _∞ =	<u> </u>	0.6	α =	·5	.0°	m _i	/m _∞ = .	0.28	3		C _D	=	
=	/		c (/-	٦)				0.28		B	leed	a. —	
Pt2	/p _{t∞} =	0.98	6 (x/)	R)lip=	4.0	<u>30</u> △	p _{t2} = -	0.041		exit	settin	g = <u>0</u>	pen
RAKE			TUBE	NO.			RAKE			TUBE	NO.]
NO.			3				NO.	11		3	<u>-</u>	5	. ,
1	0.985	0.995	1.001	1.000	0.999	0.970	2	0.990	0.999	0.999	1.000	0.992	0.937
3	0.985	0.989	0.993	0.995	0.990	0.968	14	0.973	0.974	0.973	0.975	0.977	0.975
5	0.985	0.987	0.991	0.995	0.993	0.974	6	0.991	0.999	1.001	1.001	0.993	0.961
$\overline{}$													
	(0.6	α =	8.	0°_	mi	/m _∞ =	0.32	9		$c_{\mathrm{D}_{\epsilon}}$	=	
								0.32		В	Leed		
								0.32		В	Leed		
	$/p_{t_{\infty}} =$	0.942	_ (x/I	R) _{lip} =	4.180	<u>0</u> Δ:	p _{t2} = -	0.120)	exit	leed settin	g = <u>O</u> p	oen
P _{t2}	$/p_{t_{\infty}} =$	0.942	_ (x/I	R) _{lip} =	4.180	<u>0</u> Δ:	p _{t2} = -)	exit	leed settin	g = <u>O</u> p	oen
P _{t2}	/p _{t_∞} =	0.942	(x/I	R) _{lip} =	<u>4.180</u>	0 Δ;	Pt2 = - RAKE NO.	0.120	2	exit TUBE	Leed setting NO.	s= <u>o</u> r	pen
P _{t2} RAKE NO.	/p _{t_∞} =	2	TUBE 3 1.000	NO. 4 1.000	4.180 5 0.988	0 Δ; 6 0.902	Pt2 = - RAKE NO.	0.120	2 0.975	Exit TUBE 3 0.974	leed setting NO.	5 0.946	6]
RAKE NO.	/p _{t_∞} =	2 1.000 0.932	TUBE 3 1.000 0.929	NO. 4 1.000 0.927	5 0.988 0.919	6 0.902 0.897	Pt2 = - RAKE NO. 2	0.120	2 0.975 0.925	TUBE 3 0.974 0.926	NO. 4 0.975	5 0.946 0.913	6 0.896
RAKE NO.	/Pt _∞ =	2 1.000 0.932 0.929	TUBE 3 1.000 0.929 0.930	NO. 4 1.000 0.927 0.929	5 0.988 0.919 0.924	6 0.902 0.897 0.898	RAKE NO. 2	0.120 1 0.981 0.921 0.979	2 0.975 0.925 0.971	TUBE 3 0.974 0.926 0.973	NO. 4 0.975 0.922 0.978	5 0.946 0.913 0.950	6] 0.896] 0.887]
RAKE NO.	/Pt _∞ =	2 1.000 0.932 0.929	TUBE 3 1.000 0.929 0.930	NO. 4 1.000 0.927 0.929	5 0.988 0.919 0.924	6 0.902 0.897 0.898	RAKE NO. 2	0.120 1 0.981 0.921	2 0.975 0.925 0.971	TUBE 3 0.974 0.926 0.973	NO. 4 0.975 0.922 0.978 CDa leed	5 0.946 0.913 0.950	6] 0.896] 0.887]
\overline{p}_{t_2} RAKE NO. 1 3 5	/p _t =	2 1.000 0.932 0.929	TUBE 3 1.000 0.929 0.930	NO. 4 1.000 0.927 0.929	5 0.988 0.919 0.924	0 Δ 6 0.902 0.897 0.898	RAKE NO. 2	0.120 1 0.981 0.921 0.979	2 0.975 0.925 0.971	TUBE 3 0.974 0.926 0.973	NO. 4 0.975 0.922 0.978	5 0.946 0.913 0.950	6] 0.896] 0.887]
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$	/p _t =	2 1.000 0.932 0.929	TUBE 3 1.000 0.929 0.930 α =	NO. 4 1.000 0.927 0.929 8 R) _{11p} =	5 0.988 0.919 0.924	0 Δ 6 0.902 0.897 0.898	$\begin{array}{c} p_{t_2} = -1 \\ \text{RAKE} \\ \text{NO.} \\ 2 \\ 4 \\ 6 \\ \end{array}$	0.120 1 0.981 0.921 0.979	2 0.975 0.925 0.971	TUBE 3 0.974 0.926 0.973	NO. 4 0.975 0.922 0.978 CDa leed settin	5 0.946 0.913 0.950	6] 0.896] 0.887]
\overline{P}_{t_2} RAKE NO. 1 3 5	/p _t =	2 1.000 0.932 0.929	TUBE 3 1.000 0.929 0.930 α = 6 (x/1	NO. 4 1.000 0.927 0.929 8 R) _{11p} =	5 0.988 0.919 0.924	0 Δ 6 0.902 0.897 0.898	$\begin{array}{c} p_{t_2} = -\\ RAKE \\ NO. \end{array}$ $\begin{array}{c} 2\\ 4\\ 6 \end{array}$ $\begin{array}{c} m_{\infty} = -\\ p_{t_2} = -\\ \end{array}$	0.120 1 0.981 0.921 0.979	2 0.975 0.925 0.971	TUBE 3 0.974 0.926 0.973 B: exit	NO. 4 0.975 0.922 0.978 CDa leed settin	5 0.946 0.913 0.950	6] 0.896] 0.887]
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	/p _{t_∞} = 1 0.987 0.937 0.937 /p _{t_∞} =	2 1.000 0.932 0.929 0.6 0.975	TUBE 3 1.000 0.929 0.930 \[\alpha = \frac{1}{3} \text{TUBE}	R) _{lip} = NO. 4 1.000 0.927 0.929 8 R) _{lip} = NO. 4	4.180 5 0.988 0.919 0.924 3.0° 4.18	6 0.902 0.897 0.898 mi/	Pt ₂ = - RAKE NO. 2 4 6 $m_{\infty} = -$ RAKE NO.	0.120 1 0.981 0.921 0.979 0.287	2 0.975 0.925 0.971	TUBE 3 0.974 0.926 0.973 Exit TUBE 3	NO. CDa settina NO. 1 NO. CDa settina NO.	5 0.946 0.913 0.950 =	0.896 0.887
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO.	/p _{t_∞} = 1 0.987 0.937 /p _{t_∞} = 1 0.987	2 1.000 0.932 0.929 0.6 0.975	TUBE 3 1.000 0.929 0.930 \[\alpha = \frac{1}{3} \text{(x/I)} \] TUBE 3	NO. 4 1.000 0.927 0.929 8 R)lip= NO. 4 1.000	4.180 5 0.988 0.919 0.924 .0° 4.18 5 0.998	6 0.902 0.897 0.898 mi/ 30 6 0.962	Pt2 = - RAKE NO. 2 4 6 $m_{\infty} = -$ RAKE NO. 2	0.120 1 0.981 0.921 0.979 0.287	2 0.975 0.925 0.971	TUBE 3 0.974 0.926 0.973 Exit TUBE 3 0.995	NO. 4 0.975 0.922 0.978 CDa leed settin	5 0.946 0.913 0.950 = 0.985	0.896 0.887

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\mathsf{t}_2}/p_{\mathsf{t}_\infty}$ - Continued

$M_{\infty} =$	0	.6	_ α =	8	.0°	m ₁ ,	/m _∞ = _	0.336			$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	=	
₱ _{t2}	/p _{t_∞} =	0.949	_ (x/	R) _{lip} =	4.03	<u>ю</u> Δ	p _{t2} = -	0.123		Bl exit s	.eed setting	g =0	pen
RAKE			TUBE	NO.			RAKE			TUBE			
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.980	1.000	1.001	1.001	0.982	0.903	2	0.986	0.992	0.991	0.992	0.954	
3	0.949	0.938	0.939	0.932	0.919	0.901	4	0.919	0.921	0.926	0.929	0.925	0.908
								0.989					
M _∞ :	=	0.6	_ α =	·	.0°	m _i	/m _∞ = .	0.28	33		$\mathtt{c}_{\mathtt{D}_{\!a}}$	a =	
₱ _{t2}	$/p_{t_{\infty}} =$	0.979	_ (x/	R) _{lip} =	4.030	<u>)</u> <u>\</u>	p _{t2} = -	0.046	,	ex i t	leed settin	g = 0	pen
RAKE			TUBE				RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.987	0.997	1.000	1.001	0.998	0.968	2	0.994	1.001	1.000	1.001	0.990	
3	0.982	0.973	0.972	0.971	0.967	0.960	14	0.961	0.962	0.962	0.965	0.965	0.960
5	0.981	0.973	0.971	0.973	0.970	0.962	6	0.994	1.000	1.001	1.000	0.992	0.956
				•									
				: (0.0°	_ m _i		0.33	32		$c_{\mathrm{D}_{i}}$	a = 0.	074
M _∞ =	:	0.8	_ α =				/m _∞ =	0.33		B	leed		
M _∞ =		0.912	α = _ (x/	R) _{lip} =	4.180	Ο Δ	/m _∞ =	0.122	2	ex i t	leed sett i n		
M _∞ =		0.912	α = _ (x/	R) _{lip} =	4.180	Ο Δ	/m _∞ =		2	ex i t	leed sett i n		
$M_{\infty} = \overline{p}_{t_2}$ RAKE		0.912	α =(x/	R) _{lip} =	4.180	δ Δ	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO	0.122	2	exit TUBE	NO.	g = <u>c</u>	pen 6
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	p _t _∞ = 0.923	0.8 0.912 2 0.931 0.926	α =(x/ TUBE30.9390.929	R) _{lip} = NO. 4 0.941 0.938	5 0.910 0.903	6 0.846 0.837	$m_{\infty} = $ $p_{t_2} = $ $p_{t_2} = $ $p_{t_3} = $ $p_{t_4} = $	0.122 1 0.923 0.925	2 0.933 0.924	TUBE 3 0.935 0.936	NO. 4 0.939 0.943	5 0.904 0.914	6 0.851
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	p _t _∞ = 0.923	0.8 0.912 2 0.931 0.926	α =(x/ TUBE30.9390.929	R) _{lip} = NO. 4 0.941 0.938	5 0.910 0.903	6 0.846 0.837	$m_{\infty} = $ $p_{t_2} = $ $p_{t_2} = $ $p_{t_3} = $ $p_{t_4} = $	0.122	2 0.933 0.924	TUBE 3 0.935 0.936	NO. 4 0.939 0.943	5 0.904 0.914	6 0.851
M _∞ = \bar{p}_{t_2} RAKE NO. 1 3 5	1 0.923 0.918 0.923	0.8 0.912 2 0.931 0.926 0.926	α = (x/ TUBE 3 0.939 0.929 0.930	R) _{lip} = RNO. 4 0.941 0.938 0.939	4.180 5 0.910 0.903 0.913	6 0.846 0.837 0.842	$m_{\infty} = 1$ $p_{t_2} = 1$	0.122 1 0.923 0.925	2 0.933 0.924 0.927	TUBE 3 0.935 0.936 0.932	NO. 4 0.939 0.943 0.940	5 0.904 0.914 0.904	6 0.851 0.832
$M_{\infty} = \overline{p}_{t_2}$ $\begin{bmatrix} RAKE \\ NO. \\ 1 \\ 3 \\ 5 \end{bmatrix}$	p _t _∞ = (1) 0.923 0.918 0.923	0.8 0.912 2 0.931 0.926 0.926	α = (x/ TUBE 3 0.939 0.929 0.930 α =	R) _{lip} = NO. 4 0.941 0.938 0.939	5 0.910 0.903 0.913	6 0.846 0.837 0.842	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO 2 4 6 $/m_{\infty} =$	0.122 1 0.923 0.925 0.924	2 0.933 0.924 0.927	TUBE 3 0.935 0.936 0.932	NO. 4 0.939 0.943 0.940 CDescription	g = 0 5 0.904 0.914 0.904 0.904	6 0.851 0.832
$M_{\infty} = \overline{p}_{t_2}$ $\begin{bmatrix} RAKE \\ NO. \\ 1 \\ 3 \\ 5 \end{bmatrix}$	p _t _∞ = (1) 0.923 0.918 0.923	0.8 0.912 2 0.931 0.926 0.926	α = (x/ TUBE 3 0.939 0.929 0.930 α =	R) _{lip} = NO. 0.941 0.938 0.939 0.0	5 0.910 0.903 0.913	6 0.846 0.837 0.842	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO 2 4 6 $/m_{\infty} =$	0.122 1 0.923 0.925 0.924	2 0.933 0.924 0.927	TUBE 3 0.935 0.936 0.932	NO. 4 0.939 0.943 0.940 CDecleded	g = 0 5 0.904 0.914 0.904 0.904	6 0.851 0.832
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	p _t _∞ = (1) 0.923 0.918 0.923	0.8 0.912 2 0.931 0.926 0.926	α = (x/ TUBE 3 0.939 0.929 0.930 α = (x/	R) _{lip} = NO. 0.941 0.938 0.939 0.0	5 0.910 0.903 0.913	6 0.846 0.837 0.842	$m_{\infty} = 1$	0.122 1 0.923 0.925 0.924	2 0.933 0.924 0.927	TUBE 3 0.935 0.936 0.932	NO. 4 0.939 0.943 0.940 CDecleded	g = 0 5 0.904 0.914 0.904 0.904	6 0.851 0.832
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	1 1 0.923 0.918 0.923	0.8 0.912 2 0.931 0.926 0.926 0.8 0.977	α = (x/ TUBE 3 0.939 0.929 0.930 α = (x/ TUBE 3	R) _{lip} = NO. 0.941 0.938 0.939 0.0 (R) _{lip} = NO.	5 0.910 0.903 0.913 0.913	6 0.846 0.837 0.842 	$m_{\infty} = 1$	0.122 1 0.923 0.925 0.924 0.295 0.056	2 0.933 0.924 0.927	TUBE 3 0.935 0.936 0.932 Bexit TUBE 3 0.981	NO. 4 0.939 0.943 0.940 CDescription NO. 4 0.988	g =	6 0.851 0.832 .098
M _∞ =	1 0.923 0.923 0.923	0.8 0.912 2 0.931 0.926 0.926 0.8 0.977 2 0.979 0.978	α = (x/ TUBE 3 0.939 0.929 0.930 α = (x/ TUBE 3 0.993 0.986	R) _{lip} = NO. 0.941 0.938 0.939 0.0 (R) _{lip} = NO.	5 0.910 0.903 0.913 0.913 5 0.996 0.984	6 0.846 0.837 0.842 m1 0	$m_{\infty} = 1$ m_{∞	0.122 1 0.923 0.925 0.924 0.295 0.056	2 0.933 0.924 0.927	TUBE 3 0.935 0.936 0.932 Exit TUBE 3	NO. 4 0.939 0.943 0.940 CDescription NO. 4 0.988	g =	6 0.851 0.832 .098

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t_2}/p_{\rm t_\infty}$ - Continued

M _∞ =	=	0.8	_ α =	·0	.0°	m <u>i</u>	/m _∞ =	0.338	<u> </u>		-	= _(0.092
Pt:	₂ /p _t , =	0.926	(x/	R) _{lip} =	4.030		.p _{t2} =	0.147		exit	leed sett i n	g =	pen
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE	NO.	5	[6]
1	0.918			_	1	ī	п	0.918	1	ī	ĭ	ī	T 1
3	0.916	0.933	0.954	0.965	0.932	0.844	4	0.917	0.928	0.950	0.966	0.949	0.865
5	0.919	0.933	0.948	0.962	0.940	0.848	6	0.919	0.937	0.963	0.968	0.930	0.836
M_{∞}	=	0.8	α =	=	0.0°	m _i	$/m_{\infty} =$	0.29	2		$\mathtt{c}_{\mathtt{D}}$	a =	.124
								0.056		В	leed		
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	24	5	6
1	0.975	0.987	0.999	1.000	0.999	0.960	2	0.979	0.992	0.998	1.000	0.991	[]
3	0.976	0.986	0.998	1.000	0.998	0.946	4	0.976	0.986	0.999	1.000	0.998	0.958
5	0.979	0.986	0.996	0.997	0.999	0.952	6	0.979	0.989	1.000	1.000	0.995	0.945
M _∞ =	=	0.8	_ α =	0	.0°	m _i	$/m_{\infty} =$	0.33	9			a = <u>0</u>	.123
								0.33		B	leed		
Ēt;		0.931	(x/	R) _{lip} =	3.880		p _{t2} = .	0.165		exit	leed sett i n	g =	Open
		0.931	(x/	R) _{lip} =	3.880		p _{t2} = .	0.165		exit	leed sett i n	g =	Open
Pt;	p _t _∞ =	0.931	(x/:	R) _{lip} = NO.	3.880	<u>\</u>	Pt2 = . RAKE NO.	0.165	2	exit TUBE	NO.	g =	Open
P _t	p _t _∞ =	0.931 2 0.930	TUBE 3 0.965	R) _{lip} = NO. 4 0.989	3.880 5 0.969	6 0.854	Pt ₂ = -	0.165	2 0.938	Exit TUBE 3 0.968	NO. 4 0.988	g = 5 0.925	0pen
RAKE NO.	1 0.908 0.905	0.931 2 0.930 0.927	TUBE 3 0.965 0.959	NO. 4 0.989 0.985	5 0.969 0.934	6 0.854 0.845	Pt ₂ = - RAKE NO. 2	0.165	2 0.938 0.929	TUBE 3 0.968	NO. 4 0.988 0.987	g = 5 0.925 0.965	Open
RAKE NO.	1 0.908 0.905 0.913	2 0.930 0.927 0.938	TUBE 3 0.965 0.959 0.970	NO. 4 0.989 0.985 0.990	3.880 5 0.969 0.934 0.955	6 0.854 0.845 0.843	RAKE NO. 2 4	0.165 1 0.912 0.910	2 0.938 0.929 0.929	TUBE 3 0.968 0.961 0.971	NO. 4 0.988 0.987 0.984	g = 5 0.925 0.965	0pen 6 0.859 0.835
RAKE NO. 1 3 5	1 0.908 0.905 0.913	2 0.930 0.927 0.938	TUBE 3 0.965 0.959 0.970 α =	NO. 4 0.989 0.985 0.990	5 0.969 0.934 0.955	6 0.854 0.845 0.843	$\begin{array}{c} P_{t_2} = \\ RAKE \\ NO. \\ 2 \\ 4 \\ 6 \\ \\ /m_{\infty} = \\ \end{array}$	0.165 1 0.912 0.910 0.911	2 0.938 0.929 0.929	TUBE 3 0.968 0.961 0.971	NO. 4 0.988 0.987	g =	Open 6
RAKE NO. 1 3 5	1 0.908 0.905 0.913	2 0.930 0.927 0.938	TUBE 3 0.965 0.959 0.970 α =	NO. 4 0.989 0.985 0.990 0 R) _{11p} =	5 0.969 0.934 0.955	6 0.854 0.845 0.843	$Pt_{2} = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $NO. = \frac{1}{4}$ 6 $m_{\infty} = \frac{1}{2}$ $RAKE = \frac{1}{2}$	0.165 1 0.912 0.910 0.911	2 0.938 0.929 0.929	TUBE 3 0.968 0.961 0.971	NO. 4 0.988 0.987 0.984 CDa leed settin	g =	Open 6
RAKE NO. 1 3 5	1 0.908 0.905 0.913	2 0.930 0.927 0.938	TUBE 3 0.965 0.959 0.970 α = (x/	NO. 4 0.989 0.985 0.990 0 R) _{11p} =	5 0.969 0.934 0.955	6 0.854 0.845 0.843	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ $p_{t_2} = \frac{1}{2}$	0.165 1 0.912 0.910 0.911	2 0.938 0.929 0.929	TUBE 3 0.968 0.961 0.971 Bexit	NO. 4 0.988 0.987 0.984 CDa leed settin	g =	Open 6 0.859 0.835
RAKE NO. 1 3 5 M _∞ = Pt ₂	1 0.908 0.905 0.913	2 0.930 0.927 0.938 0.8 0.985	TUBE 3 0.965 0.959 0.970 α = (x/TUBE 3	NO. 4 0.989 0.985 0.990 0 R)lip=	3.880 5 0.969 0.934 0.955 .0° 3.88	6 0.854 0.845 0.843	Pt ₂ = - RAKE NO. 2 4 6 m_{∞} = - RAKE NO.	0.165 1 0.912 0.910 0.911 0.292 0.043	2 0.938 0.929 0.929	TUBE 3 0.968 0.961 0.971 B exit TUBE	NO. NO. 4 0.988 0.987 0.984 CDa leed settin	g =	Open 6 0.859 0.835 .167 Open
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO.	1 0.908 0.905 0.913	2 0.930 0.927 0.938 0.8 0.985	TUBE 3 0.965 0.959 0.970 α = (x/ TUBE 3 0.999	NO. 4 0.989 0.985 0.990 0 R)lip= NO. 4	3.880 5 0.969 0.934 0.955 .0° 3.88	6 0.854 0.845 0.843 m ₁ ,	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2	0.165 1 0.912 0.910 0.911 0.29 0.043	2 0.938 0.929 0.929 1	TUBE 3 0.968 0.961 0.971 B exit TUBE 3 0.998	NO. 4 0.988 0.987 0.984 CDa leed settin	g =	Open 6 0.859 0.835 .167 6

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\mathsf{t}} /\!\!\!/ p_{\mathsf{t}_{\infty}}$ - Continued

M _∞ =		.8	_ α =	2.	0°	_ m ₁ ,	/m _∞ = _	0.33	2		- 4	=	_
₱ _{t2}	/p _t =	0.909	_ (x/:	R) _{lip} =	4.18	3 <u>0</u> Δ	p _{t2} = -	0.144	·	Bl exit s	eed sett in g	g = <u>Op</u>	en
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.937	0.943	0.955	0.964	0.938	0.839	2	0.934	0.936	0.945	0.949	0.909	
, -	L I					0.843							
	<u> </u>					0.843							
M _m :	<u> </u>	8.0	α =	2.0	0	m _i ,	/m _∞ =	0.295	i		c_{D_e}		
_	,			_ \				0.00		В.	Leed	a	
P _{t2}	$/p_{t_{\infty}} =$	0.976	_ (x/)	R) _{lip} =	4.18	<u>30</u> Δ	p _{t2} = -	0.06	1	exit	settin	g =	pen
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
						6							
1	0.969	0.984	0.999	1.000	0.998	0.949	2	0.969	0.986	0.997	1.000	0.987	
3	0.972	0.972	0.974	0.977	0.977	0.946	4	0.962	0.971	0.976	0.980	0.977	0.958
5	0.975	0.980	0.981	0.979	0.974	0.952	6	0.970	0.989	1.000	1.000	0.993	0.940
•		•							•			<u> </u>	
M _∞ =	=(.8	_ α =	=2	2.00	mi	/m _∞ =	0.33	8		${\tt c}_{{\tt D}_{\!i}}$	a =	
										В	leed		
						m _i				В	leed		
	_/p _{t_} =	0.922	2 (x/ TUBE	R) _{lip} =	4.030			0.176		exit TUBE	leed sett i n		
₽ _{t2}	_/p _{t_} =	0.922	2 (x/ TUBE	R) _{lip} =	4.030		p _{t2} = -	0.176		ex i t	leed sett i n		
Pt;	p _t _∞ =	0.922	2 (x/ TUBE	R) _{lip} =	4.030)Δ;	P _{t2} = RAKE	0,176	2	exit TUBE	NO.	g =c	pen
RAKE NO.	p _t _w =	2	TUBE 3 0.985	R) _{lip} = NO. 4 0.995		δ 6	Pt2 = RAKE	0.176	2	exit TUBE	NO. 4 0.973	g =c 5 	6
RAKE NO.	p _t _w =	2 0.962 0.913	TUBE 3 0.985 0.922	R) _{lip} = NO. 4 0.995 0.937	5 0.960 0.921) <u>6</u>	Pt ₂ = RAKE NO.	0.176 1 0.933 0.907	2 0.946 0.912	TUBE 3 0.962	NO. 4 0.973	g =	6 0.866
RAKE NO.	Pt _w = 0.939 0.913 0.911	2 0.962 0.963 0.913	TUBE 3 0.985 0.922 0.928	R) _{lip} = NO. 4 0.995 0.937 0.940	4.030 5 0.960 0.921 0.922	6 0.842 0.851 0.861	Pt2 =	0,176 1 0.933 0.907 0.933	2 0.946 0.912 0.944	TUBE 3 0.962 0.926 0.967	NO. 4 0.973 0.933 0.975	g =	6 0.866
Pt₂ RAKE NO. 1 3 5	Pt _w = 0.939 0.913 0.911	2 0.962 0.963 0.913 0.911	TUBE 3 0.985 0.922 0.928 α =	R) _{lip} = NO. 4 0.995 0.937 0.940	5 0.960 0.921 0.922	6 0.842 0.851 0.861	$P_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $\frac{6}{m_{\infty}} = \frac{1}{2}$	0,176 1 0.933 0.907 0.933 0.29	2 0.946 0.912 0.944	TUBE 3 0.962 0.926 0.967	NO. 4 0.973 0.933 0.975	g =	6 0.866 0.833
Pt₂ RAKE NO. 1 3 5	Pt _w = 0.939 0.913 0.911	2 0.962 0.963 0.913 0.911	TUBE 3 0.985 0.922 0.928 α =	R) _{lip} = NO. 4 0.995 0.937 0.940	5 0.960 0.921 0.922	6 0.842 0.851 0.861	$P_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $m_{\infty} = \frac{1}{2}$ $p_{t_2} = \frac{1}{2}$	0,176 1 0.933 0.907 0.933 0.29	2 0.946 0.912 0.944	TUBE 3 0.962 0.926 0.967	NO. 4 0.973 0.933 0.975 CD. Settin	g =	6 0.866 0.833
RAKE NO. 1 3 5 M _∞ \$\bar{p}_{t_2}\$	Pt _w = 0.939 0.913 0.911	2 0.962 0.913 0.911 0.8	TUBE 3 0.985 0.922 0.928 α = 4 (x/	R) _{lip} = NO. 4 0.995 0.937 0.940 (R) _{lip} =	5 0.960 0.921 0.922 2.0° = 4.030	ο Δ ο .842 ο .851 ο .861 Δ	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE	0.176 1 0.933 0.907 0.933 0.29	2 0.946 0.912 0.944	TUBE 3 0.962 0.926 0.967 Beauti	NO. 4 0.973 0.933 0.975 CD. cleed settin	g =	6 0.866 0.833
Pt ₂ RAKE NO. 1 3 5 M _∞ = Pt ₂	Pt _w = 0.939 0.913 0.911 = (Pt _w = 1)	2 0.962 0.963 0.913 0.911	TUBE 3 0.985 0.922 0.928 α = 4 (x/ TUBE	R) _{lip} = 2 NO. 4 0.995 0.937 0.940 (R) _{lip} = 2 NO. 4	5 0.960 0.921 0.922 2.0° = 4.030	6 0.842 0.851 0.861 — ^m i	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0,176 1 0.933 0.907 0.933 0.29	2 0.946 0.912 0.944	TUBE 3 0.962 0.926 0.967 Exit TUBE	NO. 4 0.973 0.933 0.975 CDated settin	5 0.918 0.922 0.931 =	0.866 0.833
RAKE NO. 1 3 5 M _∞ \$\bar{p}_{t_2}\$	p _t _∞ = 1	2 0.962 0.913 0.911 0.8 0.984	TUBE 3 0.985 0.922 0.928 α = 4 (x/ TUBE 3 1.000	R) _{lip} = NO. 4 0.995 0.937 0.940 (R) _{lip} = NO. 4 1.000	5 0.960 0.921 0.922 2.0° = 4.030	6 0.842 0.851 0.861 	$P_{t_{2}} = \frac{1}{2}$ $RAKE NO.$ 2 4 6 $/m_{\infty} = \frac{1}{2}$ $RAKE NO.$ 2	0.176 1 0.933 0.907 0.933 0.056	2 0.946 0.912 0.944 02	TUBE 3 0.962 0.926 0.967 Exit TUBE 3 0.999	NO. 4 0.973 0.933 0.975 CD. leed settin	5 0.918 0.922 0.931 a =	0.866 0.833
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$	Pt _w = 1	2 0.962 0.913 0.911 0.8 0.984 2 0.991 0.997	TUBE 3 0.985 0.922 0.928 α = 4 (x/ TUBE 3 1.000 0.999	R) _{lip} = NO. 4 0.995 0.937 0.940 (R) _{lip} = NO. 4 1.000	5 0.960 0.921 0.922 2.0° = 4.036	6 0.842 0.851 0.861 — ^m i	$P_{t_{2}} = \frac{1}{2}$ $RAKE NO.$ 2 4 6 $/m_{\infty} = \frac{1}{2}$ $RAKE NO.$ 2 4	0.176 1 0.933 0.907 0.933 0.29 0.056	2 0.946 0.912 0.944 02 0.995 0.976	TUBE 3 0.962 0.926 0.967 Exit TUBE 3 0.999 0.993	NO. 4 0.973 0.933 0.975 CDated settin	5 0.918 0.922 0.931 =	0.866 0.833

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t} /\!\!/ p_{\rm t_{\infty}}$ - Continued

M _∞ =		0.8	_ α =	=5	.0°	m _:	$L/m_{\infty} =$	0.33	2	-	$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$. =	
Ēt;	₂/p _{t∞} ·	0.905	(x/	'R) _{lip} :	= 4.	180	Ap _{te} =	0.19	8	B exit	leed sett i n	g =	0pen
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	_ 2	TUBE	NO.	5	[6]
1	0.964		1	1		1	14	11	1	1	0.956	ī	1 1
3	0.892	0.896	0.893	0.895	0.881	0.839	14	0.885	0.884	0.891	0.888	0.871	0.836
5	0.897	0.893	0.895	0.901	0.887	0.844	6	0.944	0.941	0.951	0.952	0.900	0.820
M_{∞}	=	0.8	_ α =	·	5.0°	mi	$/m_{\infty} =$	0.29	5		$\mathtt{c}_{\mathtt{D}_{\!i}}$	a =	
₱t₂	$p_{t_{\infty}} =$	0.969	(x/	R) _{lip} =	4.1	. <u>80</u> Δ	p _{t2} =	0.07	0		leed settin	ıg =	0pen
RAKE			TUBE	NO.			RAKE			TUBE	NO.		1
NO.	1	2	3	4	5	6	NO.	1	2	3	NO.	5	6
1	0.975	0.983									0.999		
_3	0.973	0.964	0.963	0.963	0.953	0.937	4	0.951	0.952	0.956	0.959	0.950	0.942
5	0.970	0.965	0.963	0.958	0.953	0.938	6	0.984	0.997	0.999	0.999	0.986	0.932
M _∞ =	·	0.8	α =	5	.0°	m _i	$/m_{\infty} =$	0.33	8		$\mathtt{c}_{\mathtt{D}_{g}}$	a =	
										B.	leed		
₱ _{t₂}	/p _t =	0.919	(x/)	R) _{lip} =	4.030	△	Pt2 = .	0.19	3	exit	settin	g =	Open
P _{t2}	₂ /p _{t_∞} =		TUBE	NO.			RAKE			exit	sett i n	g =	Open
	₂ /p _{t∞} =		TUBE	NO.			RAKE			exit TUBE	NO.		
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE	NO.	5	6
RAKE NO.	1	2 0.995	TUBE 3 0.999	NO. 4 1.000	5 0 . 969	6 0.843	RAKE NO.	1	2 0.968	TUBE 3 0.979	NO.	5 0.902	6
RAKE NO.	1 0.957 0.914	2 0.995 0.910	TUBE 3 0.999 0.904	NO. 4 1.000 0.906	5 0.969 0.891	6 0.843 0.851	RAKE NO. 2	1 0.968 0.892	2 0.968 0.899	TUBE 3 0.979 0.901	NO. 4 0.975 0.901	5 0.902 0.885	6
RAKE NO. 1 3 5	0.957 0.914 0.912	2 0.995 0.910 0.906	TUBE 3 0.999 0.904 0.906	NO. 4 1.000 0.906 0.905	5 0.969 0.891 0.898	6 0.843 0.851 0.855	RAKE NO. 2 4	0.968 0.892 0.967	2 0.968 0.899	TUBE 3 0.979 0.901	NO.	5 0.902 0.885 0.916	6
RAKE NO. 1 3 5	1 0.957 0.914 0.912	2 0.995 0.910 0.906	TUBE 3 0.999 0.904 0.906 α =	NO. 4 1.000 0.906 0.905	5 0.969 0.891 0.898	0.843 0.851 0.855	RAKE NO. 2 4 6	0.968 0.892 0.967	2 0.968 0.899 0.968	TUBE 3 0.979 0.901 0.977	NO. 14 0.975 0.901 0.977	5 0.902 0.885 0.916	6 0.855 0.823
RAKE NO. 1 3 5	1 0.957 0.914 0.912	2 0.995 0.910 0.906	TUBE 3 0.999 0.904 0.906 α =	NO. 4 1.000 0.906 0.905 5.0 R) _{11p} =	5 0.969 0.891 0.898	0.843 0.851 0.855	RAKE NO. 2 4 6	0.968 0.892 0.967	2 0.968 0.899 0.968	TUBE 3 0.979 0.901 0.977	NO. 14 0.975 0.901 0.977 CDa settin	5 0.902 0.885 0.916	6 0.855 0.823
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$	1 0.957 0.914 0.912	2 0.995 0.910 0.906	TUBE 3 0.999 0.904 0.906 α = (x/1)	NO. 4 1.000 0.906 0.905 5.0 R) _{11p} =	5 0.969 0.891 0.898	0.843 0.851 0.855	RAKE NO. 2 4 6	0.968 0.892 0.967	2 0.968 0.899 0.968	TUBE 3 0.979 0.901 0.977	NO. 14 0.975 0.901 0.977 CDa settin	5 0.902 0.885 0.916	6 0.855 0.823
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE	1 0.957 0.914 0.912	2 0.995 0.910 0.906 0.8 0.977	TUBE 3 0.999 0.904 0.906 α = (x/1) TUBE	NO. 4 1.000 0.906 0.905 5.0 R) _{11p} = NO. 4	0.969 0.891 0.898 0.898	6 0.843 0.851 0.855 mi. 30 △	RAKE NO. 2 4 6 /m _∞ = Pt ₂ = RAKE NO.	0.968 0.892 0.967 0.292 0.063	2 0.968 0.899 0.968	TUBE 3 0.979 0.901 0.977 Bexit TUBE	NO. 4 0.975 0.901 0.977 CDa leed settin	5 0.902 0.885 0.916 =	0.855 0.823
RAKE NO.	1 0.957 0.914 0.912 /Pt _∞ =	2 0.995 0.910 0.906 0.8 0.977 2 0.993	TUBE 3 0.999 0.904 0.906 \[\alpha = \text{(x/I)} \] TUBE 3	NO. 4 1.000 0.906 0.905 5.0 R) 11p= NO. 4 1.000	0.969 0.891 0.898 0.898 0.999	6 0.843 0.851 0.855 m ₁ 30 △	RAKE NO. 2 4	0.968 0.892 0.967 0.292 0.063	2 0.968 0.899 0.968	TUBE 3 0.979 0.901 0.977 Bexit TUBE 3 0.999	NO. VO. O.975 O.901 O.977 CDa setting	5 0.902 0.885 0.916 =	0.855 0.823

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t_2}/p_{\rm t_\infty}$ - Continued

$M_{\infty} =$		0.8	_ α =	8	.0°	_ m _i	$/m_{\infty} = $	0.332			${\tt c}_{{\tt D}_{\! a}}$	=	
₱ _{t2}	$p_{t_{\infty}} =$	0.897	_ (x/	R) _{lip} =	4.18	<u>0</u> Δ	p _{t2} = _	0.205		Bl exit a	eed settin	g = <u>O</u> p	oen
RAKE			TUBE	NO.			RAKE			TUBE		-	
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.983	0.998	1.000	0.999	0.957	0.825	2	0.964	0.940	0.928	0.933	0.882	
3	0.889	0.887	0.882	0.882	0.863	0.825	4	0.880	0.872	0.876	0.866	0.848	0.819
5	0.893	0.884	0.882	0.876	0.861	0.827	6	0.967	0.935	0.933	0.930	0.887	0.816
M _∞ :	=	0.8	α =	. 8	.0°	mi	/m _∞ =	0.295			C _D	a =	
_	1	0.050	(/-	-1		_				В:	leed		
P _{t2}	/p _{t∞} =	0.959	_ (X/)	R)lip=	4.18	<u>0</u> \(\Delta\)	p _{t2} = -	0.076		exit	settin	g = 01	pen
RAKE			TUBE	NO.			RAKE			TUBE	NO.	-	
NO.	1 1	2	3	4	5	6	NO.	1	2	3	4	5	6
								0.990				0.975	
								0.937					
5	0.963	0.948	0.942	0.936	0.935	0.922	6	0.992	0.993	0.993	0.993	0.977	0.927
w							_						
M ²²² =	. (0.8	$\alpha =$	8	.0°	$^{ m m_{ m i}}$	$/m_{\infty} =$	0.338			c_{D}	a .	
								0.338		B.	leed		
								0.338		B.	leed		
	/p _t =	0.909		R) _{lip} =				0.198		B.	leed sett i n		
p̄ _{t₂}	/p _t =	0.909	(x/)	R) _{lip} =	4.03	<u>0</u> <u>0</u>	p _{t2} = -	0.198		ex i t	leed settin	g = <u>0</u>	
RAKE	/p _t =	0.909	TUBE	NO.	4.03	<u>0</u> Δ:	Pt ₂ = - RAKE NO.	0.198	2	exit TUBE	NO.	g = <u>0</u>	pen 6
RAKE	/p _t =	0.909	TUBE 3 1.000	NO. 4 1.000	4.03 5 0.966	0 Δ: 6 0.833	Pt2 = RAKE	0.198	2	TUBE 3 0.975	NO.	g = 01 5 0.902	6
RAKE NO.	/p _{t_w} =	0.909 2 0.999 0.900	TUBE 3 1.000 0.887	NO. 4 1.000 0.884	4.03 5 0.966 0.863	0 Δ· 6 0.833 0.830	Pt2 = RAKE NO.	0.198 1 0.977	2 0.978 0.869	TUBE 3 0.975 0.872	NO. 4 0.971 0.872	g = 0 ₁ 5 0.902 0.859	6 0.836
RAKE NO.	/p _t = 1 0.971 0.908 0.913	0.909 2 0.999 0.900 0.895	TUBE 3 1.000 0.887 0.884	NO. 4 1.000 0.884 0.875	5 0.966 0.863 0.859	0 Δ: 6 0.833 0.830 0.831	Pt2 = - RAKE NO. 2 4	0.198 1 0.977 0.878 0.981	2 0.978 0.869 0.978	TUBE 3 0.975 0.872 0.976	NO. 4 0.971 0.872 0.976	g = 0 ₁ 5 0.902 0.859	6 0.836 0.820
$\begin{array}{c} \overline{p}_{t_2} \\ \text{RAKE} \\ \text{NO.} \\ 1 \\ 3 \\ 5 \\ \end{array}$	/p _{t_∞} = 1 0.971 0.908 0.913	0.909 0.999 0.900 0.895	TUBE 3 1.000 0.887 0.884 α =	NO. 4 1.000 0.884 0.875	5 0.966 0.863 0.859	0	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $\frac{6}{m_{\infty}} = \frac{1}{2}$	0.198 1 0.977 0.878 0.981 0.29	2 0.978 0.869 0.978	TUBE 3 0.975 0.872 0.976	NO. 4 0.971 0.872 0.976	g = _0 ₁ 5 0.902 0.859 0.916	6 0.836 0.820
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$	/p _{t_∞} = 1 0.971 0.908 0.913	0.909 0.999 0.900 0.895	TUBE 3 1.000 0.887 0.884 $\alpha = (x/x)$	NO. 4 1.000 0.884 0.875 8 R)lip=	5 0.966 0.863 0.859	0	$p_{t_{2}} = -\frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $m_{\infty} = \frac{1}{2}$ $p_{t_{2}} = -\frac{1}{2}$	0.198 1 0.977 0.878 0.981	2 0.978 0.869 0.978	TUBE 3 0.975 0.872 0.976	NO. 4 0.971 0.872 0.976 CDate of the control of th	g = _0 ₁ 5 0.902 0.859 0.916	6 0.836 0.820
$\begin{array}{c} \overline{p}_{t_2} \\ \text{RAKE} \\ \text{NO.} \\ 1 \\ 3 \\ 5 \\ \end{array}$	/p _{t_∞} = 1 0.971 0.908 0.913	0.909 0.999 0.900 0.895	TUBE 3 1.000 0.887 0.884 α =	NO. 4 1.000 0.884 0.875 8 R)lip=	5 0.966 0.863 0.859	0	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $\frac{6}{m_{\infty}} = \frac{1}{2}$	0.198 1 0.977 0.878 0.981 0.29	2 0.978 0.869 0.978	TUBE 3 0.975 0.872 0.976	NO. 4 0.971 0.872 0.976 CDate of the control of th	g = _0 ₁ 5 0.902 0.859 0.916	6 0.836 0.820
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE		2 0.999 0.900 0.895 0.8	TUBE 3 1.000 0.887 0.884 α = (x/	NO. 4 1.000 0.884 0.875 8 R)lip= NO. 4	5 0.966 0.863 0.859 .0° 4.03	0 \(\triangle \) 6 \(0.833 \) 0.830 \(0.831 \) \(\triangle	$P_{t_2} = \frac{1}{2}$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} = \frac{1}{2}$ $RAKE$ $NO.$	0.198 1 0.977 0.878 0.981 0.29	2 0.978 0.869 0.978 2	TUBE 3 0.975 0.872 0.976 Bexit TUBE	NO. 4 0.971 0.872 0.976 CDate Settin	g = _0; 5 0.902 0.859 0.916 a = _0; 5	6 0.836 0.820
RAKE NO.	/p _{t_w} = 1	0.909 0.999 0.900 0.895 0.8 0.965	TUBE 3 1.000 0.887 0.884 \[\alpha = (x/\) TUBE 3 1.000	NO. 4 1.000 0.884 0.875 8 R)lip= NO. 4 1.000	4.03 5 0.966 0.863 0.859 .0° 4.03	0 \(\triangle \) 6 \(0.833 \) 0.830 \(0.831 \) \(\triangle	$Pt_{2} = -\frac{1}{2}$ $RAKE = -\frac{1}{2}$ $RAKE = -\frac{1}{2}$ $RAKE = -\frac{1}{2}$ $RAKE = -\frac{1}{2}$	0.198 1 0.977 0.878 0.981 0.29 0.074	2 0.978 0.869 0.978 2 4	TUBE 3 0.975 0.872 0.976 Bexit TUBE 3	NO. 4 0.971 0.872 0.976 CDate of the control of t	g =0 5 0.902 0.859 0.916 a = 0.982	6 0.836 0.820 pen

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_t / p_{t_{\infty}}$ - Continued

M _∞ =	- <u> </u>	0.9	_ α =	=	0.0°	m_1	$m_{\infty} =$	0.33	31		ч	= 0	.088
₹	₂ /p _t =	0.885	(x/	'R) _{lip} =	<u>4.18</u>	<u> </u>	\p _{t2} =	0.154		B: exit	leed sett i n	g =(Open
RAKE NO.	1	2	TUBE	NO. 1	5	6	RAKE NO.	1	2	TUBE	NO.	5	
1	0.889	0.897	0.912	0.914	0.888	0.818	_ 2	0.892	0.904	0.919	0.932	0.880	
5	K		1	0.917 0.921	1	1	II .	rs .	l .	1		1	0.798
				=0.						TO	C _D leed settin	a = <u>0.</u>	.111 Open
RAKE NO.	1	2	TUBE		5	6	RAKE NO.	1	2	TUBE	NO.	5	 6
3 5	0.970	0.978	0.986	0.991	0.985	0.935	14	0.965	0.983	0.998	1.000	0.991	0.946
<u> </u>	10.500	101770	1		•	•	•	-	-		1	1-1220	10.337
<u> </u>				=				_	=	-	$\mathtt{c}_{\mathtt{D}_{i}}$	•	
M _∞ =	=().9	α =		0°	^m i	$/m_{\infty} =$	0.337	·	В	. $\mathtt{C}_{\mathrm{D}_{i}}$ leed	a = <u>0.</u>	110
M _∞ = \bar{p}_{t_2}	=(₂ /p _t =	0.900	α =) (x/	=	0° _4.030		$/m_{\infty} =$ $p_{t_2} =$ $RAKE$	0.337		B: exit TUBE	C _D leed settin	g = 0.	110 pen
$M_{\infty} = \overline{p}_{t_2}$ RAKE	= <u>(</u>	0.900	α =) (x/ TUBE	R) _{lip} =	0° 4.030	m _i) Δ	$/m_{\infty} =$ $p_{t_2} =$ RAKE	0.337	2	B exit TUBE	C _D leed settin	g = _0.	110 pen
M _∞ = \bar{p}_{t_2} RAKE NO.	((((((((((0.900 2 0.914	α = (x/ TUBE 3 0.935	R) _{lip} = NO. 4 0.953	4.030 5 0.925	m _i	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO .	0.337 0.164 1 0.898	2	Exit TUBE	C _D leed settin	g = 0. g = 0	110 pen 6
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	(p _t = ()	0.900 2 0.914 0.902	α = (x/ TUBE 3 0.935 0.928	R) _{lip} = NO. 4 0.953 0.940	0° 4.030 5 0.925	m _i) △ 6 0.824 0.810	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO .	0.337 0.164 1 0.898 0.901	2 0.910 0.907	TUBE 3 0.931 0.929	C _D leed settin NO. 14 0.942	g = _0. g = _0 5 0.892 0.918	110 pen 6 0.779 0.821
M _∞ =		2 0.914 0.902 0.908	α = (x/ TUBE 3 0.935 0.928 0.936	R) _{lip} = NO. 4 0.953	5 0.925 0.904	m _i) △ 6 0.824 0.810 0.814	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4	0.337 0.164 1 0.898 0.901 0.900	2 0.910 0.907 0.914	TUBE 3 0.931 0.929 0.937	C _D leed settin NO. 4 0.942 0.947 0.946 C _{De}	g = 0. g = 0 5 0.892 0.918 0.899	110 pen 6 0.779 0.821
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	1 0.901 0.897 0.898	2 0.914 0.902 0.908	α = (x/ TUBE 3 0.935 0.936 α =	R) _{lip} = NO. 4 0.953 0.940 0.943	5 0.925 0.904 0.909	m _i	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$	0.337 0.164 1 0.898 0.901 0.900	2 0.910 0.907 0.914	TUBE 3 0.931 0.929 0.937	C _D leed settin NO. 4 0.942 0.947	g =	110 pen [6] [0.779] [0.821] [0.805]
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	1 0.901 0.897 0.898	2 0.914 0.902 0.908	α = (x/ TUBE 3 0.935 0.936 α =	R) _{lip} = 0. R) _{lip} = 0.00. 4 0.953 0.940 0.943 R) _{lip} =	5 0.925 0.904 0.909	m _i	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $p_{t_2} =$ $RAKE$	0.337 0.164 1 0.898 0.901 0.900	2 0.910 0.907 0.914	TUBE Exit	CD leed settin NO. 4 0.942 0.947 0.946 CD leed settin	g =	110 pen 6 0.779 0.821 0.805 0.144 Open
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	1 0.901 0.897 0.898	2 0.914 0.902 0.908	$\alpha = 0$ (x/ TUBE 3 0.935 0.936 0.936 $\alpha = 0.936$	R) _{lip} = 0. R) _{lip} = 0.00. 4 0.953 0.940 0.943 R) _{lip} =	5 0.925 0.904 0.909	m _i	$/m_{\infty} =$ $p_{t_2} =$ NO 2 4 6 $/m_{\infty} =$ $p_{t_2} =$	0.337 0.164 1 0.898 0.901 0.900	2 0.910 0.907 0.914	TUBE 3 0.931 0.929 0.937	C _D leed settin NO. 14 0.942 0.947 0.946 C _{De} leed settin	g =	110 pen 6 0.779 0.821 0.805
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE		2 0.914 0.902 0.908 0.98	α = 0 (x/ TUBE 3 0.935 0.928 0.936 α = 32 (x/ TUBE 3 0.999	R) _{lip} = NO. R) _{lip} = NO. R) _{lip} = NO. 4 1.000	0° 4.030 5 0.925 0.904 0.909 4.03 5 0.999	mi 6 0.824 0.810 0.814 mi 0	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2	0.337 0.164 1 0.898 0.901 0.900 0.298 0.069	2 0.910 0.907 0.914 2 0.991	TUBE 3 0.931 0.929 0.937 Exit TUBE 3 0.997	CD leed settin NO. 4 0.942 0.947 0.946 CD eed settin NO. 4 1.000	g =	110 pen 6 0.779 0.821 0.805 0.144 Open 6
M _{\infty} = \bar{P}t_2 RAKE NO. 1 3 5 M _{\infty} = \bar{P}t_2 RAKE NO.	1 0.901 0.898	2 0.914 0.902 0.908 0.98	α = (x/ TUBE 3 0.935 0.936 α = (x/ TUBE 3 0.999 0.999	R) _{lip} = NO. 4 0.953 0.940 0.943 R) _{lip} = NO. 4	5 0.925 0.904 0.909 4.03 5 0.999 0.996	mi 6 0.824 0.810 0.814 mi 0 △ 6 0.953 0.932	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $P_{t_2} =$ $RAKE$ NO . 2 4	0.337 0.164 1 0.898 0.901 0.900 0.298 0.069 1 0.977 0.973	2 0.910 0.907 0.914 2 0.991 0.984	TUBE 3 0.931 0.929 0.937 Bexit TUBE 3 0.997 0.999	CD leed settin NO. 4 0.942 0.947 0.946 CD leed settin	g =	110 pen 6 0.779 0.821 0.805 0.144 Open 6 0.947

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt_ ∞ - Continued

M_{∞}	=0	.9	_ α =	0.	0°	m ₁ ,	/ _{m_o} = _	0.336			$\mathtt{c}_{\mathtt{D}_{\!\mathtt{a}}}$	= 0.1	52
₽ t	₂ /p _t , =	0.907	_ (x/	R) _{lip} =	3.88	<u>0</u>	p _{t2} = -	0.184		Bl exit s	eed sett in g	g = <u>Op</u>	en
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
] 1	0.879	0.905	0.939	0.971	0.946	0.822	2	0.887	0.910	0.947	0.970	0.915	
3	0.880	0.905	0.938	0.964	0.918	0.812	4	0.884	0.903	0.943	0.967	0.945	0.831
5	0.883	0.911	0.943	0.968	0.926	0.806	6	0.889	0.917	0.956	0.970	0.911	0.804
M _∞	=	.9	α =	0.	0°	m _i	/m _∞ =	0.296			$\mathtt{C}_{\mathrm{D}_{\epsilon}}$	= 0.	194
_	,			-\	2 00			0.060		B:	leed	a	
pt	$_{2}/p_{t_{\infty}}=$	0.982	<u>(x/</u>	R)lip=	3.88	<u>so</u> \triangle	p _{t2} = -	0.068		EXIC	sectin	g =	pen
RAKE			TUBE	NO.			RAKE		-	TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.974	0.987	0.999	1.000	0.999	0.954	2	0.977	0.992	0.998	1.000	0.991	
] 3_	0.973	0.986	0.999	1.000	0.995	0.933	4	0.974	0.986	1.000	1.000	0.997	0.948
5	0.978	0.983	0.996	0.996	0.998	0.942	6	0.978	0.987	1.000	1.000	0.996	0.942
W													
IVI	= 3	L.O	$\alpha =$	0.	00	$\mathtt{m_{i}}$	$/m_{\infty} =$	0.323	3		$c_{ m D}$	= 0.	124
								0.323		B	leed		
	=									B	leed		
<u>₽</u> 1	. ₂ /p _{t∞} =	0.837	7_ (x/	R) _{lip} =				0.168		B	leed settin		
	. ₂ /p _{t∞} =	0.837	7 (x/ TUBE	R) _{lip} =	4.18	30 A	p _{t2} =	0.168		exit	leed settin		
P ₁	. ₂ /p _{t∞} =	2	7_ (x/ TUBE	R) _{lip} =	4.18	<u>β0</u> Δ	Pt ₂ =	0.168	2	exit TUBE	leed settin	g =	open 6
RAKI NO.	p _t _∞ = 1	2	7_ (x/ TUBE 3 0.862	R) _{lip} =	5 0.863	6 0.771	Pt ₂ = RAKE	0.168	2	TUBE	NO.	g =0 5 0.852	6
RAKI NO.	2 pt _∞ = 0.816 0.815	2 0.835 0.827	TUBE 3 0.862 0.850	R) _{lip} = RNO. 4 0.885	5 0.863 0.848	6 0.771 0.759	Pt ₂ = RAKE NO.	0.168	2 0.852 0.833	TUBE 3 0.877 0.861	NO. 4 0.895	g =0 5 0.852 0.862	6 0.768
RAKE NO. 1 3 5	2/p _{t_∞} = 0.816 0.815 0.819	2 0.835 0.837 0.840	TUBE 3 0.862 0.850 0.866	R) _{lip} = NO. 4 0.885 0.871 0.883	4.18 5 0.863 0.848 0.857	6 0.771 0.759 0.760	RAKE NO. 2 4	0.168 1 0.828 0.818 0.824	2 0.852 0.833 0.844	TUBE 3 0.877 0.861 0.871	NO. 4 0.895 0.884 0.894	g = 0 5 0.852 0.862 0.851	6 0.768 0.754
RAKE NO.		2 0.835 0.827 0.840	TUBE 3 0.862 0.850 0.866 α =	R) _{lip} = NO. 4 0.885 0.871 0.883	5 0.863 0.848 0.857	6 0.771 0.759 0.760	$P_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $\frac{6}{m_{\infty}} = \frac{1}{2}$	0.168 1 0.828 0.818 0.824	2 0.852 0.833 0.844	TUBE 3 0.877 0.861 0.871	NO. 4 0.895 0.884 CD	g =	6 0.768 0.754
RAKE NO.	2/p _{t_∞} = 0.816 0.815 0.819	2 0.835 0.827 0.840	TUBE 3 0.862 0.850 0.866 α =	R) _{lip} = NO. 4 0.885 0.871 0.883	5 0.863 0.848 0.857	6 0.771 0.759 0.760	$P_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $\frac{6}{m_{\infty}} = \frac{1}{2}$	0.168 1 0.828 0.818 0.824	2 0.852 0.833 0.844	TUBE 3 0.877 0.861 0.871	NO. 4 0.895 0.884 CD	g =	6 0.768 0.754
RAKE NO. 1 3 5 M _∞ p.		2 0.835 0.827 0.840	TUBE 3 0.862 0.850 0.866 α = 0 (x/	R) _{lip} = NO. 4 0.885 0.871 0.883	5 0.863 0.848 0.857	6 0.771 0.759 0.760	$P_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $\frac{6}{m_{\infty}} = \frac{1}{2}$	0.168 1 0.828 0.818 0.824	2 0.852 0.833 0.844	TUBE 3 0.877 0.861 0.871	NO. 4 0.895 0.884 0.894 CD	g =	6 0.768 0.754
RAKE NO.		2 0.835 0.827 0.840	TUBE 3 0.862 0.850 0.866 α = 0 (x/	R) _{lip} = 2 NO. 4 0.885 0.871 0.883	5 0.863 0.848 0.857	6 0.771 0.759 0.760	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ $\frac{4}{6}$ $\frac{6}{m_{\infty}} = \frac{1}{2}$	0.168 1 0.828 0.818 0.824	2 0.852 0.833 0.844	TUBE 3 0.877 0.861 0.871	NO. 4 0.895 0.884 0.894 CD	g =	6 0.768 0.754
RAKE NO. 1 3 5 M _∞ p.	$p_{t_{\infty}} = \frac{1}{1}$ 0.816 0.815 0.819 $p_{t_{\infty}} = \frac{1}{1}$	2 0.835 0.827 0.840 1.0	TUBE 3 0.862 0.850 0.866 α = 0 (x/ TUBE 3	R) _{lip} = NO. 4 0.885 0.871 0.883 (R) _{lip} = NO. 4	5 0.863 0.848 0.857 0.0° = 4.186	6 0.771 0.759 0.760 mi	$P_{t_2} =$ RAKE NO. 2 4 6 $/m_{\infty} =$ RAKE NO.	0.168 1 0.828 0.818 0.824 0.29 0.069	2 0.852 0.833 0.844	TUBE 3 0.877 0.861 0.871	NO. 4 0.895 0.884 0.894 CD Sleed settin	g =	6 0.768 0.754 .145 Open
RAKE NO. 1 3 5 M _∞ P. RAKE NO.	1 0.816 0.815 0.819	2 0.835 0.827 0.840 1.0 0.960	TUBE 3 0.862 0.850 0.866 α = 0 (x/ TUBE 3 0.979	R) _{lip} = 2 NO. 4 0.885 0.871 0.883 (R) _{lip} =	5 0.863 0.848 0.857 0.0° = 4.186	6 0.771 0.759 0.760 m ₁ 0	$P_{t_{2}} = \frac{\text{RAKE}}{\text{NO.}}$ $\frac{2}{4}$ 6 $/m_{\infty} = \frac{1}{\text{RAKE}}$ $\frac{1}{\text{NO.}}$ $\frac{1}{2}$	0.168 1 0.828 0.818 0.824 0.069	2 0.852 0.833 0.844	TUBE 3 0.877 0.861 0.871 Exit TUBE 3	NO. 4 0.895 0.884 0.894 CD Settin	g =	6 0.768 0.754 .145 Open

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\text{t}_2}/p_{\text{t}_{\infty}}$ - Continued

M _∞ =	=	1.0	_ α =	<u> </u>	0.0°	m-j	$L/m_{\infty} =$	0.333	3		$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	= _0	.138
								0.172		В.	leed		
RAKE			TUBE	E NO.			RAKE			TUBE	NO.		1
NO.	1	2	3	4	5	6	NO.		2	3	4	5	6
1								0.898					
3	0.889	0.898	0.913	0.915	0.864	0.775	4	0.883	0.890	0.900	0.907	0.867	0.789
5	0.894	0.902	0.911	0.912	0.868	0.784	6	0.896	0.902	0.917	0.921	0.863	0.773
${\rm M}_{\infty}$	=	1.0	α =	=(0.0°	m _i	$m_{\infty} =$	0.303	,		\mathtt{C}_{D}	a =().178
₸.	/n. =	:) (x/	R) =	4.030) ^		0.074	L	B: ex i t.	leed settin	а с –	Open
Pta	2 ^{/ Pt} ∞			"'/llp		<u> </u>	.p _{t2} = .		<u> </u>	- 01110	5000111	· 5	орен
RAKE			TUBE	NO.	•		RAKE	1		TUBE	NO.]
NO.													
								0.975					
	0.972	0.983	0.999	0.999	0.993	0.927	4	0.970	0.983	0.999	1.000	0.996	0.941
5	0.975	0.984	0.997	0.994	0.997	0.934	6	0.975	0.987	1.000	1.000	0.997	0.933
M _∞ =	=	1.0	_ α =	0.0) ⁰	m _i	$/m_{\infty} =$	0.334			$c_{\mathrm{D}_{\epsilon}}$	a =	.205
∓ ⊄	/p+ =	- 0.880) (x/:	R), =	3.88	30 ^-	n. =	0.198		B] exit	Leed sett i na	g =	Open
												-	
RAKE			TUBE	NO.	, .		RAKE	1		TUBE	NO.	,	_]
1								0.859					
3		0.876	0.911	0 031	001	0 700		# · • •					
								0.858					
5	0.861							0.858 0.862					
		0.876	0.911	0.934	0.894	0.787	6		0.893	0.930	0.948 C _{Da}	0.885	0.774
M _∞ =		0.876	0.911 α =	0.934	0.894	0.787	6 /m _∞ = _	0.862	0.893	0.930 B3	0.948	0.885 = <u>0</u> .	240
$M_{\infty} = \overline{p}_{t_2}$		0.876 1.0	0.911 α =	0.934 R) _{lip} =	0.894	0.787	6 /m _∞ = _	0.862	0.893	0.930 B3	C _{Da} Leed settin	0.885 = <u>0</u> .	240
$M_{\infty} = \bar{p}_{t_2}$		0.876 1.0	$\alpha = \frac{\alpha - \alpha}{\alpha}$	0.934 R) _{lip} =	0.894	0.787	6 /m _∞ = p _{t2} =	0.862	0.893	0.930	C _{Da} Leed settin	0.885 = <u>0</u> .	240
$M_{\infty} = \overline{p}_{t_2}$	/p _t =	0.876	0.911 α = (x/ TUBE 3	0.934 R) _{lip} = NO.	0.894 0.0° 3.880	0.787 	6 $/m_{\infty} = \frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ RAKE NO.	0.862 0.302 0.074	2	exit TUBE	C _{Da} Leed setting	0.885 = _0. g = _0	240
$M_{\infty} = \overline{p}_{tz}$ RAKE	/p _t =	0.876	α = 0 (x/2 TUBE 3 0.999	NO. 4	0.894 0.0° 3.880 5 0.998	0.787 	6 $/m_{\infty} = \frac{1}{2}$ $\frac{1}{2}$ RAKE $\frac{1}{2}$	0.862 0.302 0.074	2 0.992	0.930 Blexit TUBE 3 0.997	C _{Da} Leed setting NO.	0.885 = $0.$ $g = 0.$ $5.$ 0.987	0.774 240 pen

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_t / p_{t_{\infty}}$ - Continued

				2.						1 01		=	
₱ _{t2}	/p _t _=	0.834	_ (x/	R) _{lip} =	4.18	<u>30</u> Δ	p _{t2} = -	0.205	<u> </u>	exit a	eed setting	g = <u>Op</u>	en
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.839	0.862	0.895	0.917	0.883	0.763	2	0.836	0.857	0.888	0.905	0.849	
3	0.810	0.825	0.849	0.863	0.840	0.759	4	0.799	0.807	0.837	0.847	0.826	0.765
5	0.812	0.825	0.846	0.860	0.840	0.759	6	0.831	0.853	0.882	0.903	0.854	0.746
M _∞ :	=;	1.0	<u></u> α =	=2	.0°	mi	/m _∞ = _	0.299)	B	$\mathtt{C}_{\mathtt{D}_{\!2}}$	a =	
₱ _{t₂}	/p _t =	0.956	_ (x/	R) _{lip} =	4.180	<u>)</u> Δ;	p _{t2} = (0.073		Bi ex i t	leed settin	g = <u>O</u> p	en
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	_3	4	5	6
1	0.957	0.970	0.979	0.982	0.983	0.933	2	0.958	0.968	0.972	0.982	0.968	
3	0.960	0.962	0.971	0.975	0.958	0.914	14	0.938	0.938	0.946	0.955	0.950	0.930
5	0.962	0.959	0.958	0.958	0.951	0.916	6	0.960	0.976	0.982	0.985	0.972	0.913
M _∞ =	=	1.0	_ α =	=2.	.0°	m _i	$/m_{\infty} = 1$	0.33	33		c_{D}	a =	-
										В:	leed		
				2.		30 Δ	p _{t2} = ₋	0.214		В:	leed		
P̄t;	₂ /p _t _∞ =	0.872	_ (x/	R) _{lip} =	4.03	30 Δ	p _{t2} = -	0.214	.	B: exit TUBE	leed settin	g = _0	
P̄t;	₂ /p _t _∞ =	0.872	_ (x/		4.03	30 Δ	p _{t2} = -	0.214	.	B: exit TUBE	leed settin	g = _0	
P _t 2	_/p _{t∞} =	0.872	(x/ TUBE	R) _{lip} =	4.03	30 A	Pt2 = - RAKE NO.	0.214	2	EXit TUBE	leed settin	g = _0	pen 6
P _{tz}	p _t _∞ =	2 0.915	(x/ TUBE 3 0.947	R) _{lip} =	5 0.910	6 0.776	Pt ₂ = - RAKE NO.	0.214	2	TUBE 3 0.917	NO. 4	g = _0 5 0.861	pen
Pt2 RAKE NO.	pt _w =	2 0.915 0.875	TUBE 3 0.947 0.887	R) _{lip} = RNO. 4 0.956	5 0.910 0.852	6 0.776 0.775	Pt2 = RAKE NO.	0.214	2 0.910 0.858	TUBE 3 0.917 0.864	NO. 4 0.925 0.868	g = _ 0 5 0.861 0.848	6 0.788
RAKE NO.	p _t _∞ = 1	2 0.872 0.915 0.875 0.887	TUBE 3 0.947 0.887 0.895	R) _{lip} = RNO. 4 0.956 0.897 0.897	4.03 5 0.910 0.852 0.858	6 0.776 0.775 0.778	Pt ₂ = - RAKE NO. 2 4 6	0.214 1 0.902 0.856 0.899	2 0.910 0.858 0.907	TUBE 3 0.917 0.864 0.924	NO. 4 0.925 0.868 0.932	g = _ O 5 0.861 0.848 0.874	6 0.788 0.769
RAKE NO. 1 3 5	pt _w = 1 1 0.902 0.877 0.883	2 0.915 0.875 0.887	TUBE 3 0.947 0.887 0.895	R) _{lip} = RNO. 4 0.956 0.897 0.897	5 0.910 0.852 0.858	6 0.776 0.775 0.778	$p_{t_{\mathcal{P}}} = \frac{1}{2}$ $RAKE NO.$ 2 4 6 $/m_{\infty} = \frac{1}{2}$	0.214 0.902 0.856 0.899	0.910 0.858 0.907	TUBE 3 0.917 0.864 0.924	NO. 4 0.925 0.868 0.932	g = 0 5 0.861 0.848 0.874	6 0.788 0.769
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$	pt _w = 1 1 0.902 0.877 0.883	2 0.915 0.875 0.887	TUBE 3 0.947 0.887 0.895 α = (x/	R) _{lip} = 2 NO. 4 0.956 0.897 0.897 2. (R) _{lip} =	5 0.910 0.852 0.858	6 0.776 0.775 0.778	$p_{t_{2}} = \frac{1}{2}$ $RAKE NO.$ 2 4 6 $/m_{\infty} = \frac{1}{2}$	0.214 1 0.902 0.856 0.899	0.910 0.858 0.907	TUBE 3 0.917 0.864 0.924	NO. 4 0.925 0.868 0.932 CDecker	g = 0 5 0.861 0.848 0.874	6 0.788 0.769
RAKE NO. 1 3 5	pt _w = 1 1 0.902 0.877 0.883	2 0.915 0.875 0.887 1.0 0.980	TUBE (x/ TUBE 0.947 0.887 0.895 α = (x/ TUBE	R) _{lip} = RNO. 4 0.956 0.897 0.897	4.03 0.910 0.852 0.858 .0°	6 0.776 0.775 0.778 	$p_{t_{\mathcal{P}}} = \frac{1}{2}$ $RAKE NO.$ 2 4 6 $/m_{\infty} = \frac{1}{2}$	0.214 0.902 0.856 0.899 0.303	0.910 0.858 0.907	TUBE 3 0.917 0.864 0.924 Exit	NO. 4 0.925 0.868 0.932 CDecker	g = 0 5 0.861 0.848 0.874	6 0.788 0.769
RAKE NO. RAKE NO. RAKE NO. RAKE NO.	1 0.902 0.877 0.883	2 0.915 0.875 0.887 1.0 0.980	TUBE 3 0.947 0.887 0.895 α = (x/ TUBE	R) _{lip} = NO. 4 0.956 0.897 0.897 2. (R) _{lip} = NO. 4	5 0.910 0.852 0.858 .0° 4.030	6 0.776 0.775 0.778 m ₁	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.214 0.902 0.856 0.899 0.303	2 0.910 0.858 0.907	TUBE 3 0.917 0.864 0.924 Exit TUBE	NO. 4 0.925 0.868 0.932 CDated settir	g =O 5 0.861 0.848 0.874 a =O	6 0.788 0.769
Pt ₂ RAKE NO. 1 3 5 M _∞ = Pt ₂ RAKE NO. 1	1 1 0.902 0.883	2 0.915 0.875 0.887 1.0 0.980	TUBE 3 0.947 0.887 0.895 α = (x/ TUBE 13 0.999	R) _{lip} = NO. 4 0.956 0.897 0.897 2. (R) _{lip} = NO. 4 1.000	5 0.910 0.852 0.858 .0° 4.030	6 0.776 0.775 0.778 	$p_{t_{2}} = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $M_{\infty} = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $RAKE = \frac{1}{2}$	0.214 1 0.902 0.856 0.899 0.303 0.07	2 0.910 0.858 0.907 3	TUBE 3 0.917 0.864 0.924 Exit TUBE 3 0.997	NO. 4 0.925 0.868 0.932 CDescription	g = 0 5 0.861 0.848 0.874 = - ng = 0	6 0.788 0.769
RAKE NO. RAKE NO. RAKE NO. RAKE NO.	Pt _w = 1	2 0.915 0.875 0.887 1.0 0.980	TUBE 3 0.947 0.887 0.895 α = (x/ TUBE 3 0.999 0.999	R) _{lip} = NO. 4 0.956 0.897 0.897 2. (R) _{lip} = NO. 4	5 0.910 0.852 0.858 .0° 4.030 5 0.997 0.984	6 0.776 0.775 0.778 m1 0 6 0.944 0.923	$p_{t_{2}} = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $M_{\infty} = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $RAKE = \frac{1}{2}$	0.214 0.902 0.856 0.899 0.303 0.07	2 0.910 0.858 0.907 3 2 0.993 0.974	TUBE 3 0.917 0.864 0.924 Exit TUBE	NO. 4 0.925 0.868 0.932 CDate of the control of the	g = 0 5 0.861 0.848 0.874 a = 0 5 0.995 0.996	6 0.788 0.769 pen 6 0.947

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $\mathtt{p_t/p_{t_{\infty}}}$ - Continued

M _∞ =	=	1.0	_ α =	_ 5	.0°	m _j	$/m_{\infty} =$	0.323	3	-	$\mathtt{c}_{\mathtt{D}_{\!\mathtt{z}}}$. =	
₽t2	₂ /p _t , =	0.82	<u>7</u> (x/	'R) _{lip} =	<u>4.1</u>	<u>80</u>	\p _{t2} =	0.25	5	B exit	leed settin	g =	Open
RAKE NO.	1	. 2	TUBE	NO.		[6	RAKE NO.	1	2	TUBE	NO.	5	[6]
	1	т	I	0.949	1 -	I	П	Ħ	1	1	I	I	1 1
_	+		i	î	î	î	Ϋ́	π	Ī	Ī	Ť	ī	0.738
${\rm M}_{\infty}$	=	1.0	_ α :	= 5.	.0°	m _i	$/m_{\infty} =$	0.299	9		$\mathtt{c}_{\mathtt{D}}$	a =	
$\overline{\mathtt{p}}_{t_{\mathcal{Z}}}$	$p_{t_{\infty}} =$	0.949	9_ (x/	R) _{lip} =	4.180	<u>Ο</u> Δ	p _{t2} = .	0.087	7			ng = _0p	oen
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE	E NO.	5] 6
1	0.953	0.963	0.980	0.985	0.985	0.925	2	0.975	0.980	0.978	0.986	0.969	Î
$\overline{}$	· · · · · · · · · · · · · · · · · · ·		ŧ	0.933	i	Ŷ	#	#	ŧ	†	ŧ	Į.	† 1
5	0.957	0.946	0.941	0.931	0.930	0.907	6	0.976	0.982	0.984	0.988	0.975	0.910
			1					<u>u</u>	1	1			
		•	•	=	•	m _i	$/m_{\infty} =$	•	•	•	c _D	a =	
M _∞ =	·	1.0	α =		5.0°			0.333	3	. В	C _D leed		·
M _∞ =	·	0.867	α =	R) _{lip} =	4.03	30 A	Pt ₂ = .	0.333	7	B exit	C _D leed settin	g = _ ()pen
$M_{\infty} = \overline{p}_{t_2}$	·	0.867	α =	R) _{lip} =	4.03	30 A	Pt ₂ = .	0.333	7	B exit	C _D leed settin	g = _ ()pen
$M_{\infty} = \overline{p}_{t_2}$ RAKE	=	0.867	α = 7 (x/ TUBE	R) _{lip} =	4.03	30 A	Pt2 = . RAKE NO.	0.333	7	B exit TUBE	C _D leed settin	g = _ ()pen
$M_{\infty} = \overline{p}_{t_2}$ RAKE		2 0.964	α = 7 (x/ TUBE 3 0.989	R) _{lip} =	4.03 4.03 5 0.940	30 △ 6 0.763	Pt2 = . RAKE NO.	0.333 0.277 1 0.925	2	TUBE	CD leed settin	g =)pen 6
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	p _t =	2 0.964 0.843	α = 7 (x/ TUBE 3 0.989 0.847	R) _{lip} = R) _{lip} = NO. 4 0.993 0.848	5.0° 4.03 5.0° 0.940 0.826	30 Δ (0.763) (0.775)	Pt2 = . RAKE NO. 2	0.333 0.277 1 0.925 0.824	2 0.926 0.828	TUBE 3 0.939 0.835	CD leed settin NO.	g =)pen 6
M _∞ = \bar{p}_{t_2} RAKE NO. 1 3 5	p _t = 1	2 0.964 0.843 0.852	α = 7 (x/ TUBE 3 0.989 0.847	R) _{lip} = R) _{lip} = NO. 4 0.993 0.848	5.0° 4.03 5.0° 0.940 0.826 0.834	6 0.763 0.775 0.784	RAKE NO. 2 4	0.333 0.277 1 0.925 0.824 0.918	2 0.926 0.828 0.926	TUBE 3 0.939 0.835	C _D leed setting NO. 4 0.947 0.837 0.951	g =	0.780 0.753
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	Pt _∞ =	2 0.964 0.843 0.852	$\alpha = \frac{1}{2} (x)$ TUBE 3 0.989 0.847 0.853	R) _{lip} = R) _{lip} = NO. 4 0.993 0.848 0.859	5.0° 4.03 5.0° 0.940 0.826 0.834	6 0.763 0.775 0.784	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.333 0.277 1 0.925 0.824 0.918	2 0.926 0.828 0.926	TUBE 3 0.939 0.835 0.941	CD leed settin NO. 4 0.947 0.837	g =0 0.865 0.818 0.878	0.780 0.753
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	Pt _∞ =	2 0.964 0.843 0.852	$\alpha = \frac{1}{2} (x)$ TUBE 3 0.989 0.847 0.853	R) _{lip} = R) _{lip} = NO. 4 0.993 0.848 0.859 5. R) _{lip} =	5.0° 4.03 5.0° 0.940 0.826 0.834	6 0.763 0.775 0.784	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE	0.333 0.277 1 0.925 0.824 0.918 0.303	2 0.926 0.828 0.926	TUBE 3 0.939 0.835 0.941	CD leed settin	g =0 0.865 0.818 0.878	0.780 0.753
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	Pt _∞ =	2 0.964 0.843 0.852	$\alpha = \frac{1}{2} (x)$ TUBE 3 0.989 0.847 0.853 $\alpha = \frac{1}{2} (x)$	R) _{lip} = R) _{lip} = NO. 4 0.993 0.848 0.859 5. R) _{lip} =	5.0° 4.03 5.0° 0.940 0.826 0.834	6 0.763 0.775 0.784	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$	0.333 0.277 1 0.925 0.824 0.918 0.303	2 0.926 0.828 0.926	TUBE 3 0.939 0.835 0.941	CD leed settin	g =0 0.865 0.818 0.878	0.780 0.753
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE		2 0.964 0.843 0.852	$\alpha = \frac{1}{2} (x)$ TUBE 3 0.989 0.847 0.853 $\alpha = \frac{1}{2} (x)$ TUBE 3	R) _{lip} = R) _{lip} = NO. 4 0.993 0.848 0.859 5. R) _{lip} = NO.	5.0° 4.03 5.0° 0.940 0.826 0.834 0° 4.030	6 0.763 0.775 0.784 Δ	$p_{t_2} =$ RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO.	0.333 0.277 1 0.925 0.824 0.918 0.303 0.076	2 0.926 0.828 0.926	TUBE 3 0.939 0.835 0.941 Bexit TUBE	CD leed settin	g =	0.780 0.753
M_{∞} = \overline{p}_{t_2} RAKE NO. 1 3 5 M_{∞} = \overline{p}_{t_2} RAKE NO.		2 0.964 0.843 0.852 0.972	$\alpha = \frac{1}{2} (x)$ TUBE 3 0.989 0.847 0.853 $\alpha = \frac{1}{2} (x)$ TUBE 3	R) _{lip} = R) _{lip} = NO. 4 0.993 0.848 0.859 5. R) _{lip} = NO.	5.0° 4.03 6.0° 4.03 6.0° 6.0° 6.940 6.826 6.834 6.834 6.997	6 0.763 0.775 0.784 ————————————————————————————————————	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO. 2	0.333 0.277 1 0.925 0.824 0.918 0.303 0.076	2 0.926 0.828 0.926	TUBE 3 0.939 0.835 0.941 Bexit TUBE 3 0.997	CD leed setting NO.	g =	0.780 0.783

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t}/p_{\rm t_{\infty}}$ - Continued

								0.323		D.	7	=	
P _{t2}	/p _t =	0.815	_ (x/	R) _{lip} =	4.180	<u> </u>	p _{t2} = -	0.331		exit s	eett in g	= <u>Op</u>	en
RAKE			TUBE				RAKE		1	TUBE	NO.	-	
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
	1		T .	0.985			1	1 1		- 1	0.852		1
	1			0.786		i I		0.768	i	1		1	i i
	-			0.799				0.890					
M _∞ :	=	1.0	α =	·	8.0°	m _i	/m _∞ =	0.299			$\mathtt{c}_{\mathtt{D}_{\!\scriptscriptstyle E}}$	=	
₱t₂	/p _t =	0.938	<u>8</u> (x/	R) _{lip} =	4.180	<u>)</u> Δ:	p _{t2} =	0.106		ex i t	leed settin	g = Op	en
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	<u>1</u> 4	5	6	NO.	1]	2	3	4	5	6
1	0.956	0.975	0.983	0.986	0.980	0.908	2	0.982	0.981	0.980	0.981	0.954	
3	0.941	0.924	0.915	0.912	0.905	0.887	14	0.907	0.907	0.913	0.911	0.906	0.897
5	0.944	0.924	0.914	0.911	0.908	0.892	6	0.983	0.981	0.983	0.986	0.967	0.901
	п	1 ;	1	1	1	1	u	11-11-11		1 - 1 - 0 - 0	10.000	0.707	0.701
M _∞ =	·	1.0	α =	= 8.	.0°	mi	/m _∞ =	0.333	}	В:	$\mathtt{c}_{\mathtt{D}_{\!arepsilon}}$ leed	a =	
$M_{\infty} = \overline{p}_{t_2}$	=	0.85	α = 0 (x/	= <u>8</u> .	4.030	m _i	/m _∞ =	0.333		B exit	C _{Ds} leed settin	a =	
$M_{\infty} = \overline{p}_{t_2}$	=	0.85	α = 0 (x/	= <u>8</u> .	4.030	m _i	/m _∞ =	0.333		B exit	C _{Ds} leed settin	a =	
$M_{\infty} = \overline{p}_{t_2}$	=	0.85	α = 0 (x/	= <u>8</u> .	4.030	m _i	/m _∞ =	0.333		B exit	C _{Ds} leed settin	a =	
M_{∞} = \bar{p}_{t_2} RAKE NO	=	0.85	α = 0 (x/ TUBE	= <u>8</u> .	4.030	^m i	/m _∞ = p _{t2} = RAKE NO.	0.333	2	exit TUBE	C _D	g =(open 6
$M_{\infty} = \overline{P}_{t_2}$ $\begin{bmatrix} RAKE \\ NO. \end{bmatrix}$	p _t =	0.850 2 0.979	$\alpha = 0 (x/3)$ TUBE $3 0.987$	= 8. R) _{lip} = E NO.	4.030 5 0.913		$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO .	0.333	2	TUBE	C _{De} leed settin	g =(5 0.843)pen 6
$M_{\infty} = \overline{P}_{t_2}$ RAKE NO.	p _t =	0.85 0.85 0.979 0.826	$\alpha = 0$ (x/ TUBE 3 0.987 0.814	R) _{lip} = E NO. 4 0.989	4.030 5 0.913 0.779	6 0.731 0.751	$/m_{\infty} =$ $p_{t_{\mathcal{P}}} =$ $RAKE$ NO .	0.333	2 0.940 0.807	TUBE 3 0.926 0.807	CD _e leed settin	g =(5 0.843	6 0.756
$M_{\infty} = \frac{\bar{p}_{t_2}}{\bar{p}_{t_2}}$ RAKE NO.	p _t _∞ = 1 1 0.946 0.849 0.848	2 0.85 0.979 0.826 0.830	α = 0 (x/ TUBE 3 0.987 0.814 0.817	8.R) _{lip} = E NO. 4 0.989 0.809 0.804	4.030 5 0.913 0.779 0.788	6 0.731 0.751 0.753	$/m_{\infty} =$ $Pt_{2} =$ $RAKE$ NO . 2 4 6	0.333 0.304 1 0.950 0.807 0.948	2 0.940 0.807 0.936	TUBE 3 0.926 0.807 0.934	CDeleed setting NO. 4 0.923 0.808 0.927	g =(5 0.843	6 0.756 0.741
$M_{\infty} = \frac{\bar{p}_{tz}}{\bar{p}_{tz}}$ $\begin{bmatrix} RAKE \\ NO. \\ 1 \\ 3 \\ 5 \end{bmatrix}$	p _t _∞ =	0.85 0.85 0.979 0.826 0.830	$\alpha = 0$ (x/ TUBE 3 0.987 0.814 0.817	R) _{lip} = E NO. 4 0.989 0.809 0.804	4.030 5 0.913 0.779 0.788	6 0.731 0.751 0.753	$/m_{\infty} =$ $p_{t_{\mathcal{C}}} =$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} =$	0.333 0.304 1 0.950 0.807	2 0.940 0.807 0.936	TUBE 3 0.926 0.807 0.934	CDeleed setting NO. NO. 4 0.923 0.808 0.927 CDeleed	5 0.843 0.779 0.853	0pen 6
$M_{\infty} = \overline{p}_{t_2}$ $\begin{bmatrix} RAKE \\ NO \end{bmatrix}$ $\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ $M_{\infty} = \overline{p}_{t_2}$	p _t _∞ =	0.85 0.85 0.979 0.826 0.830	$\alpha = 0 (x/3)$ TUBE 3 0.987 0.814 0.817 $\alpha = 5 (x/3)$	R) _{lip} = E NO. 4 0.989 0.809 0.804	4.030 5 0.913 0.779 0.788	6 0.731 0.751 0.753	$/m_{\infty} =$ $p_{t_{\mathcal{C}}} =$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} =$	0.333 0.304 1 0.950 0.807 0.948	2 0.940 0.807 0.936	TUBE 3 0.926 0.807 0.934	CDeleed setting NO. NO. 4 0.923 0.808 0.927 CDeleed	5 0.843 0.779 0.853	0pen 6
$M_{\infty} = \frac{\bar{p}_{tz}}{\bar{p}_{tz}}$ $\begin{bmatrix} RAKE \\ NO. \\ 1 \\ 3 \\ 5 \end{bmatrix}$	p _t _∞ =	0.85 0.85 0.979 0.826 0.830	$\alpha = 0 (x/3)$ TUBE 3 0.987 0.814 0.817 $\alpha = 5 (x/3)$	R) _{lip} = E NO. 4 0.989 0.809 0.804 E 8 (R) _{lip} =	4.030 5 0.913 0.779 0.788	6 0.731 0.751 0.753	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $p_{t_2} =$	0.333 0.304 1 0.950 0.807 0.948	2 0.940 0.807 0.936	TUBE 3 0.926 0.807 0.934	CDeleed setting NO. 4 0.923 0.808 0.927 CDeleed setting	5 0.843 0.779 0.853	0pen 6
$M_{\infty} = \overline{p}_{t_2}$ $\begin{bmatrix} RAKE \\ NO \end{bmatrix}$ $\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ $M_{\infty} = \overline{p}_{t_2}$ $RAKE$	p _t _∞ = 1 0.946 0.849 0.848	0.850 0.850 0.979 0.826 0.830 1.0 0.95	$\alpha = 0$ (x/ TUBE 3 0.987 0.814 0.817 $\alpha = 5$ (x/ TUBE 3	R) _{lip} = E NO. 4 0.989 0.809 0.804 E 8 (R) _{lip} =	4.030 5 0.913 0.779 0.788 .0° 4.0	6 0.731 0.751 0.753 — mi 30 \triangle	$m_{\infty} = 1$ RAKE NO. $m_{\infty} = 1$ $m_{\infty} = 1$ $m_{\infty} = 1$ $m_{\infty} = 1$ RAKE NO.	0.333 0.304 1 0.950 0.807 0.948 0.303 0.094	2 0.940 0.807 0.936	TUBE O.926 O.807 O.934 Fexit TUBE	CDeleed setting NO. NO. 4 0.923 0.808 0.927 CDeleed setting NO.	5 0.843 0.779 0.853 a =	0.756 0.741
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	1 0.946 0.848	0.85 0.85 0.979 0.826 0.830 1.0 0.95		R) _{lip} = E NO. 0.989 0.809 0.804 (R) _{lip} = E NO.	4.030 5 0.913 0.779 0.788 .0° 4.0	6 0.731 0.751 0.753 mi 30	$m_{\infty} = 1$ $m_{$	0.333 0.304 1 0.950 0.807 0.948 0.303 0.094	2 0.940 0.807 0.936	TUBE 3 0.926 0.807 0.934 Exit TUBE 3	CDeleed setting NO. NO. 4 0.923 0.808 0.927 CDeleed setting NO. 4	5 0.843 0.779 0.853 a =0 5 0.971	0.756 0.741

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt_o- Continued

										TO.	500F		0.178
₽t;	₂ /p _{t_∞} =	0.812	(x/	R) _{lip} =		80 /	7p _{t2} =	0.187		exit	settin	g =	Open
RAKE				NO.			RAKE	N		TUBE	E NO.		
NO.	1	2	3	4 _	5	6	NO.	1	2	3	4	5	6
1	0.785	0.800	0.836	0.858	0.835	0.753	2	0.799	0.828	0.861	0.881	0.829	<u> </u>
3	0.786	0.802	0.838	0.870	0.832	0.733	4	0.781	0.807	0.833	0.858	0.845	0.755
5	0.771	0.804	0.845	0.858	0.831	0.736	6	0.790	0.808	0.845	0.869	0.836	0.727
M_{∞}	=1	.1	_ α =		0.0°	m <u>i</u>	$/m_{\infty} =$	0.3	08		$\mathtt{c}_{\mathtt{D}}$	a =0	.191
₱ _{ta}	$p_{t_{\infty}} =$	0.941	_ (x/i	R) _{lip} =	4.1	<u>80</u> △	p _{t2} = .	0.074		ex i t	leed settin	ıg =	0pen
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
1	0.924	0.936	0.958	0.964	0.968	0.928	2	0.924	0.939	0.944	0.960	0.951	
3	0.923	0.931	0.945	0.958	0.952	0.907	14	0.929	0.939	0.954	0.964	0.954	0.918
5	0.931	0.944	0.951	0.959	0.957	0.907	6	0.932	0.950	0.969	0.973	0 960	0 903
	10000	0.744	0.331	0.757	0.737	0.307	<u> </u>	0.702	0.750	0.505	0.773	0.000	0.703
	1.:	1	α =	(0.0°	m _i	/m _∞ =	0.333	3	В:	$\mathtt{c}_{\mathtt{D}_{\!i}}$ leed	a = _0	.186
		1	α =	(0.0°	m _i	/m _∞ =	0.333	3	В:	$\mathtt{c}_{\mathtt{D}_{\!i}}$ leed	a = _0	.186
	1.:	1	α =	R) _{lip} =	0.0°	m _i	/m _∞ =	0.333	3	В:	C _{D;} leed settin	a = _0	.186
Ē _{t2}	=1.: _/p _{t_\infty} =	1	α =(x/I	R) _{lip} =	0.0°	ni	$/m_{\infty} = 0$ $p_{t_2} = 0$ $RAKE$	0.333	3	B. exit	C _D	a = _0	.186
Pt ₂ RAKE	$= 1.2$ $p_{t_{\infty}} = 1$	0.853	α =(x/I	R) _{lip} = NO. 4	4.030 5	ш _і	$/m_{\infty} = $ $p_{t_2} = $ $RAKE$	0.333	2	Exit TUBE	C _D , leed settin	g =	.186 Open
Pt ₂ RAKE	= 1.: 2/p _{t_∞} = 1 1 0.863	0.853 2 0.869	α =(x/I	NO. 4 0.902	5 0.868	m _i 0 △ 6 0.773	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO .	0.333	2	EXIT TUBE 3 0.877	C _D eed setting	g =	.186 Open
RAKE NO.	1.1 p _{t_{\infty} = 1 0.863 0.867}	0.853 2 0.869 0.874	α = (x/I TUBE 3 0.895 0.889	NO. 4 0.902 0.893	5 0.868 0.850	m _i 0 △ 6 0.773 0.756	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4	0.333 0.178	2 0.864 0.865	TUBE 3 0.877 0.880	CDs leed settins NO.	g =	.186 Open 6 0.770
RAKE NO.	= 1.: 2/p _{t_∞} = 1 1 0.863	0.853 2 0.869 0.874 0.862	α = (x/I TUBE 3 0.895 0.889 0.883	NO. 4 0.902 0.893 0.890	5 0.868 0.850 0.849	m _i 0 △ 6 0.773 0.756 0.765	$/m_{\infty} = \frac{1}{2}$ RAKE NO.	0.33 0.178 1 0.864 0.857 0.868	2 0.864 0.865 0.877	TUBE 3 0.877 0.880 0.891	C _{D₂} leed setting NO. 4 0.889 0.889 0.901	g =	.186 Open 6 0.770 0.750
$\begin{array}{c} \overline{p}_{t_2} \\ \text{RAKE NO.} \\ \hline 1 \\ \hline 3 \\ \hline 5 \\ \\ \text{M}_{\infty} = \end{array}$	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.853 2 0.869 0.874 0.862	α = (x/I TUBE 3 0.895 0.889 0.883	NO. 4 0.902 0.893 0.890	5 0.868 0.850 0.849	m _i 0	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$	0.333 0.178 1 0.864 0.857 0.868	2 0.864 0.865 0.877	TUBE 3 0.877 0.880 0.891	CD2 leed setting NO. 4 0.889 0.889	g =	.186 Open 6 0.770 0.750
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	1.2/p _{t_∞} = 1.2	0.853 2 0.869 0.874 0.862	α = (x/I TUBE 3 0.895 0.889 0.883	NO. 4 0.902 0.893 0.890 R)lip=	5 0.868 0.850 0.849	m _i 0	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE	0.333 0.178 1 0.864 0.857 0.868	2 0.864 0.865 0.877	TUBE 3 0.877 0.880 0.891	CDeleed setting NO. 4 0.889 0.889 0.901 CDeleed setting	g =	.186 Open 6 0.770 0.750
\overline{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	1.2/p _{t_∞} = 1.2	0.853 2 0.869 0.874 0.862	α = (x/I TUBE 3 0.895 0.889 0.883 α = (x/I	NO. 4 0.902 0.893 0.890 R)lip=	5 0.868 0.850 0.849	m _i 0	$/m_{\infty} =$ $p_{t_2} =$ NO $P_{t_2} =$ $P_{t_2} =$ $P_{t_2} =$ $P_{t_2} =$ $P_{t_2} =$ $P_{t_2} =$	0.333 0.178 1 0.864 0.857 0.868	2 0.864 0.865 0.877	TUBE 3 0.877 0.880 0.891 B. exit	CDeleed setting NO. 4 0.889 0.889 0.901 CDeleed setting	g =	.186 Open 6 0.770 0.750
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	1.	0.853 2 0.869 0.874 0.862 1 0.978	α = (x/I TUBE 3 0.895 0.889 0.883 α = (x/I TUBE 3	NO. 4 0.902 0.893 0.890 R)lip= NO. 4	5 0.868 0.850 0.849 0.0° 4.030	m _i 0	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.333 0.178 1 0.864 0.857 0.868 0.311	2 0.864 0.865 0.877	TUBE 3 0.877 0.880 0.891 Exit TUBE 3	CD2 leed setting NO. 4 0.889 0.889 0.901 CD2 leed setting	5 0.845 0.847 = (9 5 5	.186 Open 6 0.770 0.750 O.220 Open
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO.	1. p _{t_∞} = 1. 1 0.863 0.867 0.856 1.	0.853 2 0.869 0.874 0.862 1 0.978	α = (x/I TUBE 3 0.895 0.889 0.883 α = (x/I TUBE 3 0.998	NO. 4 0.902 0.893 0.890 CR) 11p= NO. 4 1.000	5 0.868 0.850 0.849 0.0° 4.030 5 0.998	m _i 0	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.333 0.178 1 0.864 0.857 0.868 0.311 0.077	2 0.864 0.865 0.877	TUBE 3 0.877 0.880 0.891 Exit TUBE 3 0.994	CDaleed settina NO. 4 0.889 0.901 CDaleed settina NO.	5 0.845 0.847 = (g =	.186 Open 6 0.770 0.750 Open 6 6

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_t/p_t_o- Continued

M _∞ =		1.1	_ α =		0.0°_	_ m ₁ ,	/m _∞ = _	0.337			$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	= 0.2	256
₱ _{t₂}	/p _t =	0.86	3_ (x/	R) _{lip} =	3.880	<u>)</u>	p _{t2} = -	0.200	_	Bl exit s	.eed sett in g	g = Op	en
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.840	0.859	0.897	0.932	0.908	0.778	2	0.838	0.860	0.890	0.928	0.871	
3	0.836	0.852	0.897	0.925	0.883	0.768	4	0.839	0.860	0.908	0.931	0.898	0.786
5	0.836	0.854	0.892	0.919	0.885	0.764	6	0.841	0.878	0.920	0.937	0.879	0.764
M_{∞}	= 1	.1	_ α =	0	.0°	m _i	/m _∞ =	0.311			$\mathtt{c}_{\mathtt{D}_{\!\mathtt{z}}}$	= 0.	.286
								0.076		B:	leed		
RAKE		-	TUBE				RAKE			TUBE	NO.]
NO.	1	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.968	0.980	0.999	1.000	0.998	0.944	2	0.972	0.989	0.995	1.000	0.987	
3	0.968	0.978	0.998	1.000	0.993	0.926	14	0.969	0.982	0.999	1.001	0.996	0.940
5	0.973	0.981	0.997	0.993	0.997	0.932	6	0.974	0.984	1.000	1.000	0.995	0.928
M _∞ =	<u> </u>	.2	_ a =	. 0	.0°	m _i	$/m_{\infty} =$	0.32	8		c_{D}	a =	0.150
								0.32		B:	leed		
₽t;	₂ /p _t _∞ =	0.775	_ (x/	R) _{lip} =	4.1	<u>80</u> Δ	p _{t2} = .	0.1	88	B: exit	leed settin	g =(
₽t;	₂ /p _t _∞ =	0.775	_ (x/	R) _{lip} =	4.1	<u>80</u> Δ	p _{t2} = .	0.1	88	B: exit	leed settin	g =(
Pt;	p _t =	0.775	(x/ TUBE	R) _{lip} = . NO.	4.1	80 A	p _{t2} = . RAKE NO.	0.1	2	exit TUBE	leed settin	g =(Open 6
Pt;	p _t _∞ =	0.775 2 0.768	TUBE 3 0.802	R) _{lip} = NO. 4 0.826	5 0.804	80 △ 0.718	P _{t2} = RAKE	0.1	2	Exit TUBE	NO.	g =	6 0.663
RAKE NO.	pt _w =	0.775 2 0.768 0.759	TUBE 3 0.802 0.791	R) _{lip} = NO. 4 0.826 0.815	4.1 5 0.804 0.797	80 △ 6 0.718 0.702	Pt2 = RAKE NO.	0.18	2 0.779 0.778	TUBE 3 0.808	NO. 4 0.839 0.832	g =	6 0.663 0.715
RAKE NO.	pt _w =	2 0.768 0.759 0.770	TUBE 3 0.802 0.791 0.806	R) _{lip} = . NO. 4 0.826 0.815 0.830	5 0.804 0.797 0.802	80 △ 6 0.718 0.702 0.703	P _{t2} = RAKE NO. 2 4	0.13 0.753 0.749 0.744	2 0.779 0.778 0.780	TUBE 3 0.808 0.814	NO. 4 0.839 0.832 0.830 CD	5 0.795 0.806 0.801	6 0.663 0.715
RAKE NO.	pt _w =	2 0.768 0.759 0.770	TUBE 3 0.802 0.791 0.806 α =	R) _{lip} = . NO. . NO. . 4 . 0.826 . 0.815 . 0.830	5 0.804 0.797 0.802	80 △ 0.718 0.702 0.703	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{6}$	0.16 1 0.753 0.749 0.744 0.30	2 0.779 0.778 0.780	TUBE 3 0.808 0.814 0.806	NO. 4 0.839 0.832 0.830 CD.	g =	6 0.663 0.715 0.693
RAKE NO. 1 3 5 M _∞ \$\bar{p}_{t}\$	pt _w =	2 0.768 0.759 0.770	TUBE 3 0.802 0.791 0.806 α = (x/	R) _{lip} = NO. 0.826 0.815 0.830	5 0.804 0.797 0.802	80 △ 0.718 0.702 0.703	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$	0.13 0.753 0.749 0.744	2 0.779 0.778 0.780	TUBE 3 0.808 0.814 0.806	NO. 4 0.839 0.832 0.830 CD	g =	6 0.663 0.715 0.693
RAKE NO.	pt _w =	2 0.768 0.759 0.770	TUBE 3 0.802 0.791 0.806 α = (x/	R) _{lip} = . NO. . NO. . 4 . 0.826 . 0.815 . 0.830	5 0.804 0.797 0.802	6 0.718 0.702 0.703	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{6}$	0.16 1 0.753 0.749 0.744 0.30	2 0.779 0.778 0.780	TUBE 3 0.808 0.814 0.806	NO. 4 0.839 0.832 0.830 CD	g =	6 0.663 0.715 0.693
RAKE NO. RAKE NO. RAKE RO. RAKE NO.	pt _w = 1	2 0.768 0.759 0.770 .2 0.901	TUBE 3 0.802 0.791 0.806 α = (x/ TUBE	R) _{lip} = NO. 0.826 0.815 0.830 (R) _{lip} = NO.	5 0.804 0.797 0.802 0.0° =_4.18	6 0.718 0.702 0.703 — ^m 1 0	$p_{t_2} =$ RAKE NO. 2 4 6 $/m_{\infty} =$ $p_{t_2} =$ RAKE	0.16 1 0.753 0.749 0.744 0.30 0.05	2 0.779 0.778 0.780 7	TUBE 3 0.808 0.814 0.806	NO. 4 0.839 0.832 0.830 CDate of the control of t	g =	0.663 0.715 0.693 0.161 0pen
RAKE NO. 1 3 5 M _∞ \$\bar{p}_{t}\$	pt _w = 1	2 0.768 0.759 0.770 .2 0.901	TUBE 3 0.802 0.791 0.806 α = (x/ TUBE 3 0.909	R) _{lip} = NO. 0.826 0.815 0.830 (R) _{lip} = NO.	4.1 5 0.804 0.797 0.802 0.0° 4.18 5 0.917	80 \(\text{\infty} \) \[\begin{aligned} 0.718 \\ 0.702 \\ 0.703 \\ \text{\infty} \\ \tex	$p_{t_2} =$ RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO.	0.16 1 0.753 0.749 0.744 0.30 0.05	2 0.779 0.778 0.780 7	TUBE 3 0.808 0.814 0.806 Exit TUBE 3 0.903	NO. 4 0.839 0.832 0.830 CD	g =	0.663 0.715 0.693 0.161 0pen

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued

M _∞ =	1.2	_ α =	·	0.0°	m _j	$L/m_{\infty} =$	0.27	18			a = 0	.203
$\bar{\mathbf{p}}_{\mathrm{t}_2}/\mathbf{p}_{\mathrm{t}_{\infty}}$	=_0.960	_ (x/	R) _{lip} =	4.18	<u>80</u> 2	$\Delta p_{t_2} =$	0.032		exit	leed settin	ng =)pen
1 0.95 3 0.95	2 8 0.961 0 7 0.956 0	0.971 0.964	0.971	0.972 0.962	6 0.959 0.943	2	1 0.960 0.960	0.966	0.961	0.968	0.964	0.947
$M_{\infty} = \frac{1}{\bar{p}_{t_2}/p_{t_{\infty}}}$. 2	α =	0	.0°	m _i	$/m_{\infty} =$	0.33	5	-	$c_{ m L}$	a = C	.166
RAKE NO. 1 1 0.808 3 0.802	2 3 0.820 0 0.812 0 0.832 0	TUBE 3 0.850	NO. 4 0.875 0.882	5 0.857 0.848	6 0.760 0.736	RAKE NO. 2	1 0.807 0.804	2 0.822 0.809	TUBE 3 0.852 0.843	NO. 4 0.880 0.868	5 0.835 0.854	6] 0.699 0.763
		í		ι.	1	Ц	Ц	1				1
$M_{\infty} = \frac{1}{\bar{p}_{t_2}/p_{t_{\infty}}}$	1.2	α =	(0.0°	mi	/m _∞ =	0.317		В:	$\mathtt{c}_{\mathtt{D}}$ leed	a = <u>0</u>	.176
$M_{\infty} = \frac{\bar{p}_{t_2}/p_{t_{\infty}}}{\bar{p}_{t_2}/p_{t_{\infty}}}$ RAKE NO. 1 1 0.940 3 0.942	1.2	α = (x/F TUBE 3 .978 .975	NO. 4 0.992 0.991	5 0.989 0.983	m _i Δ 6 0.929 0.910	$m_{\infty} = 1$ $p_{t_2} = 1$ $m_{\infty} = 1$	0.317 0.085 1 0.946 0.941	2 0.963 0.954	TUBE 3 0.976	C _D leed settin	g =	.176 Open
$M_{\infty} = \frac{\bar{p}_{t_2}/p_{t_{\infty}}}{\bar{p}_{t_2}/p_{t_{\infty}}}$ RAKE NO. 1 1 0.940 3 0.942	1.2 = 0.960 2 0.951 0 0.951 0 0.957 0	$\alpha = \frac{(x/F)^{-1}}{(x/F)^{-1}}$ TUBE 3 .978 .975 .978 .978	NO. 4 0.992 0.991 0.985	5 0.989 0.983 0.986	m _i	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$	0.317 0.085 1 0.946 0.941 0.945	2 0.963 0.954 0.959	TUBE 3 0.976 0.977 0.981	CD leed settin NO. 0.988 0.987 0.989	a = _0 g = 0.974 0.985 0.985	.176 Open
$M_{\infty} = \frac{\bar{p}_{t_2}/p_{t_{\infty}}}{\bar{p}_{t_2}/p_{t_{\infty}}}$ RAKE 1 0.940 3 0.942 5 0.946 M_{\infty} = \frac{M_{\infty}}{2} =	1.2 = 0.960 2 0.951 0 0.957 0 0.957 0	$\alpha = \frac{(x/F)^{-1}}{(x/F)^{-1}}$ TUBE 3	NO. 14 0.992 0.991 0.985 0 R) _{lip} =	5 0.989 0.983 0.986	m _i	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$	0.317 0.085 1 0.946 0.941 0.945	2 0.963 0.954 0.959	TUBE 3 0.976 0.977 0.981	CD leed settin NO. 0.988 0.987 0.989	a = _0 g = 0.974 0.985 0.985	.176 Open 6 0.926 0.912

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt $_{\infty}$ - Continued

M _∞ =		1.3	_ α =		0.0°	m ₁ ,	/m _∞ = ,	0.324			$\mathrm{c}_{\mathrm{D}_{\!\mathbf{a}}}$	= 0.	137
₱ _{t2}	$p_{t_{\infty}} =$	0.745	(x/	R) _{lip} =	4.1	.80 <u>08</u> .	p _{t2} = -	0.19	9	Bl exit s	eed etting	g =	Open
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2			5	6	NO.	1	2	3	4	5	6
1	0.710	0.723	0.757	0.771	0.760	0.687	2	0.730	0.765	0.800	0.830	0.774	
3	0.715	0.736	0.768	0.797	0.764	0.675	4	0.709	0.726	0.754	0.776	0.761	0.685
5	0.717	0.749	0.787	0.817	0.779	0.673	6	0.727	0.748	0.784	0.812	0.768	0.669
M _∞ :	1.	3	_ α =	0	.0°	m ₁ ,	/m _∞ = .	0.313				a =	0.141
\bar{p}_{t_2}	$/p_{t_{\infty}} =$	0.858	<u>3</u> (x/	R) _{lip} =	4.18	<u>80</u> Δ:	p _{t2} = .	0.055			leed settin	g = <u>0</u>	pen
RAKE			TUBE	NO.			RAKE	1		TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.867	0.867	0.873	0.871	0.856	0.831	2	0.866	0.864	0.864	0.872	0.858	
3	0.858	0.857	0.870	0.870	0.849	0.834	Ъ	0.864	0.861	0.866	0.864	0.852	0.828
5	0.867	0.870	0.875	0.872	0.861	0.832	6	0.864	0.869	0.868	0.873	0.857	0.828
M _∞ =	1.	. 3	_ α =	·	0.00	mi	$/m_{\infty} =$	0.30	3		$\mathtt{C}_{\mathrm{D}_{2}}$	a =	0.151
₽t;	_/p _t _ =	0.897	<u>/</u> (x/	R) _{lip} =	4.18	30 Δ	p _{t2} =	0.04	1	exit	leed sett i n	g = <u>0</u>	pen
RAKE	T ·		. लामञ्रह				RAKE	I -		TUBE	NO		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
								0.898				0.902	
~~	¥ ·-		;	r e	ř	0.878	•	0.896	ŷ	1	,	1	,
	0.905							0.897	0.899	0.904	0.908	0.899	0.877
		•	-, .			•		0.34	:1		$c_{D_{\epsilon}}$	= 0.1	.46
								0.203					
	≥ - ر ∞ ه					-	π -, , -	Π		TUBE			
RAKE NO.	1	2	TUBE	NO. 4	5	6	RAKE NO.	 - 1	2] 3	1 4	5	6
ļ	L	i	1 me 2. 2		Ť	0.728	U Ti	<u>n</u>	f ·	0.832	i ·	†	
ì~	Ħ	†	ŧ	î	i ·	i	ĪΪ	#	i	i -	i —	i	1
5	110.///	10.193	10.002	1 0.000	10.014	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	,, , , -,	1	,	1		
3	Ħ	†	ŧ	î	i ·	0.728	ĪΪ	#	i	0.832	i —	i	1

Table 3.. TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt_ ∞ - Continued

M _∞ =	=1	.3	_ α =	=	0.0°	m _:	$L/m_{\infty} =$	0.32	28			a = _(0.156
₱t;	₂ /p _t ,=	0.945	(x/	'R) _{lip} :	=_4.03	<u> </u>	19 _{t2} =	0.0	86	exit	Bleed settir	ng =	Open
RAKE			TUBE	E NO.			RAKE		-	TUB	E NO.]
NO.	1	2	3	NO.	5	6	NO.	1	5	<u> </u>	E NO.	5	[6]
1	0.929	0.934	0.958	0.973	0.980	0.917	2	0.933	0.944	0.951	0.972	0.961	0.859
3	0.931	0.934	0.951	0.963	0.964	0.907	4	0.929	0.942	0.960	0.975	0.974	0.914
5	0.933	0.944	0.957	0.964	0.974	0.905	6	0.931	0.940	0.959	0.976	0.975	0.899
${ m M}_{\infty}$	=1	.3	_ α =	0	.0°	mj	$/m_{\infty} =$	0.30	7	_	c_{I}) = 0	.179
	/n -	0.06	5 (2/	_ رم	/ na	ο.		0.052		Evit	Bleed	a	
Pta	$p_{t_{\infty}} =$	0.90.	(x/	K/lip=	4.03	<u> </u>	p _{t2} =	0.032		- ext	secti	ıg =	Open
RAKE			TUBE	NO.			RAKE	ĺ		TUBI	E NO.		1
NO.	1	2	3	4	5	6	NO.	1	5	3	E NO. J 4	5	6
1	0.956	0.962	0.977	0.981	0.984	0.959	2	0.962	0.969	0.971	0.981	0.977	Ì Ì
3	0.959	0.960	0.975	0.979	0.976	0.932	14	0.959	0.962	0.975	0.981	0.980	0.943
5	0.963	0.966	0.974	0.973	0.982	0.933	6	0.962	0.965	0.976	0.982	0.980	0.932
M _∞ =	=).6	α =		0.0°	mi	$/m_{\infty} =$	0.32	29		$c_{ m D}$	a =	0.065
										T	7		
	/p _t =									T	7		
P _{t2}	/p _t =	0.956	(x/)	R) _{lip} =	4.18	<u>30</u> Δ	P _{t2} = .	0.094	i	exit TUBE	leed settin	g =(Closed
Ēt _z	/p _t =	0.956	(x/)	R) _{lip} =	4.18	<u>30</u> Δ	P _{t2} = .	0.094	i	exit TUBE	leed settin	g =(Closed
Pt ₂	/p _t =	2	TUBE	NO.	4.18	<u>30</u> Δ	P _{t2} = . RAKE NO.	0.094	2	Exit TUBE	leed settin	g =(Closed 6
RAKE	/p _t =	2 0.953	TUBE 3 0.971	NO. 4 0.986	5 0.974	6 0.914	P _{t2} = . RAKE NO.	0.094	2	TUBE	leed settin	g =(5 0.963	6 0.879
RAKE NO.	p _{t_∞} =	0.956 2 0.953 0.956	TUBE 3 0.971 0.976	NO. 4 0.986 0.988	4.18 5 0.974 0.973	6 0.914 0.900	P _{t2} = - RAKE NO. 2	0.094 1 0.946 0.946	2 0.959 0.953	TUBE 3 0.977 0.967	leed setting NO.	g =(5 0.963 0.975	6 0.879
RAKE NO.	p _t _∞ =	0.956 0.957	TUBE 3 0.971 0.976 0.973	NO. 4 0.986 0.988 0.987	5 0.974 0.973 0.970	6 0.914 0.900 0.904	RAKE NO. 2 4	0.094 0.946 0.946 0.945	2 0.959 0.953 0.959	TUBE 3 0.977 0.967 0.974	NO. 4 0.990 0.984 0.989	g =(5 63 0.963 0.967	6 0.879 0.921 0.902
\overline{P}_{t_2} RAKE NO. 1 3 5	/Pt _∞ =	0.956 0.953 0.956 0.957	TUBE 3 0.971 0.976 0.973 α =	NO. 4 0.986 0.988 0.987	5 0.974 0.973 0.970	6 0.914 0.900 0.904 m ₁	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ 6 $m_{\infty} = \frac{1}{2}$	0.094 0.946 0.946 0.945	2 0.959 0.953 0.959	TUBE 3 0.977 0.967 0.974	NO. 4 0.990 0.984 0.989	g =(5 0.963 0.975 0.967	6 0.879 0.921 0.902
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$	/p _{t_∞} = 1 0.943 0.944 0.946	0.956 0.953 0.956 0.957	TUBE 3 0.971 0.976 0.973 α =	NO. 4 0.986 0.988 0.987	5 0.974 0.973 0.970	6 0.914 0.900 0.904 m ₁	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ 6 $m_{\infty} = \frac{1}{2}$ $p_{t_2} = \frac{1}{2}$	0.094 0.946 0.946 0.945	2 0.959 0.953 0.959	TUBE 3 0.977 0.967 0.974	NO. 4 0.990 0.984 0.989 CDeed settin	g =(5 0.963 0.975 0.967	6 0.879 0.921 0.902
\overline{P}_{t_2} RAKE NO. 1 3 5	/p _{t_∞} = 1 0.943 0.944 0.946	0.956 0.953 0.956 0.957	TUBE 3 0.971 0.976 0.973 α = (x/1)	NO. 4 0.986 0.988 0.987	5 0.974 0.973 0.970	6 0.914 0.900 0.904 m ₁	$p_{t_2} = \frac{1}{2}$ RAKE NO. $\frac{2}{4}$ 6 $m_{\infty} = \frac{1}{2}$	0.094 0.946 0.946 0.945	2 0.959 0.953 0.959	TUBE 3 0.977 0.967 0.974	NO. 4 0.990 0.984 0.989 CDeed settin	g =(5 0.963 0.975 0.967	6 0.879 0.921 0.902
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	/p _{t_∞} = 0.943 0.944 0.946 0 /p _{t_∞} =	2 0.953 0.956 0.957 .6 0.938	TUBE 3 0.971 0.976 0.973 α = (x/) TUBE 3	NO. 4 0.986 0.988 0.987 R)lip= NO. 4	5 0.974 0.973 0.970 0.0° 4.18	6 0.914 0.900 0.904 m ₁ ,	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.0946 0.946 0.945 0.28	2 0.959 0.953 0.959 7	TUBE 3 0.977 0.967 0.974 Bexit TUBE	NO. C NO. 4 0.990 0.984 0.989 CDesired settin	g =(5 0.963 0.975 0.967 =0 g =	6 0.879 0.921 0.902 .091 Closed
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO. 1	p _{t_∞} = 0.943 0.944 0.946 0 p _{t_∞} = 1 0.937	2 0.953 0.956 0.957 .6 0.938	TUBE 3 0.971 0.976 0.973 α = (x/1) TUBE 3 0.941	NO. 4 0.986 0.988 0.987 R)lip= NO. 4 0.946	5 0.974 0.973 0.970 0.0° 4.18	6 0.914 0.900 0.904 m ₁ 0	$P_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO. 2	0.0946 0.946 0.945 0.28 0.02	2 0.959 0.953 0.959 7 5	TUBE 3 0.974 Exit TUBE 3 0.946	NO. C NO. 4 0.990 0.984 0.989 CDe settin	g =	6 0.879 0.921 0.902 .091 Closed 6
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO.	p _{t_∞} = 0.943 0.944 0.946 0 p _{t_∞} = 1 0.937 0.937	2 0.953 0.956 0.957 .6 0.938 2 0.938 0.938	TUBE 3 0.971 0.976 0.973 α = (x/1) TUBE 3 0.941 0.943	NO. 4 0.986 0.988 0.987 R)lip= NO. 4	4.18 5 0.974 0.973 0.970 4.18 5 0.940 0.939	6 0.914 0.900 0.904 m1 6 0.928 0.927	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4	0.0946 0.946 0.945 0.28 0.02	2 0.959 0.953 0.959 7 5 2 0.941 0.938	TUBE 3 0.977 0.967 0.974 Exit TUBE 3 0.946 0.941	NO. C NO. 4 0.990 0.984 0.989 CDe settin	g =	6 0.902 .091 .091 .091 .0910 .0929

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt $_{\infty}$ - Continued

				0.						RI		= <u>C</u>	
₽ _{t2}	/p _t =	0.963	_ (x/	R) _{lip} =	4.03	<u>30</u> Δ:	p _{t2} = =	0.096		exit s	eed setting	= <u>C1</u>	osed_
RAKE			TUBE	NO.			RAKE	ı		TUBE	NO.		
NO.			·			···				Ī		5	6
1	0.953	0.966	0.980	0.992	0.977	0.918	2	0.958	0.969	0.986	0.995	0.961	0.883
3	0.955	0,967	0.982	0.994	0.970	0.904	4	0.957	0.963	0.977	0.992	0.979	0.924
_ 5	0.958	0.969	0.985	0.993	0.975	0.906	6	0.959	0.969	0.982	0.992	0.970	0.903
M _∞ =	=0	.6	_ a =	0.	.0°	_ m _i ,	/m _∞ = _	0.283		ים	C _{Da} Leed		.106
${f ilde p}_{ t 2}$	$/p_{t_{\infty}} =$	0.96	<u>6</u> (x/]	R) _{lip} =	4.03	<u>30</u> Δ ₃	p _{t2} = -	0.026		_ب	LCCU		<u>Close</u> d
RAKE			TUBE	NO.			RAKE			TUBE			
NO.	1	2	_3	4	_5	6	NO.	1 1	2	3	4	5_	6
1	0.961	0.964	0.968	0.974	0.973	0.955	2	0.964	0.965	0.971	0.975	0.971	0.933
3	0.962	0.966	0.971	0.974	0.973	0.955	4	0.963	0.963	0.972	0.974	0.974	0.963
5	0 061	062	0 068	0.973	0.975	0.959	6	0.963	0.965	0.971	0.976	0.971	0.951
	По•эот	10.302	10.300	[0.773]	10.77	1 1	. ~	10.,,,,	1 * * * * * * * * * * * * * * * * * * *				
	_							•	•		-		
M _∞ =	-2	0.6	_ α =	:(0.0°	m ₁	/m _∞ =	0.339)	В:	C _{Ds}	a =	0.098
M _∞ =	-2	0.6	_ α =	:(0.0°	m ₁	/m _∞ =	0.339)	В:	c _{Ds}	a =	0.098
M _∞ = \bar{p}_{t_2}	-2	0.6	_ α =	R) _{lip} =	0.0°	m ₁	/m _∞ =	0.339)	В:	C _{Ds} leed setting	a =	0.098
M _∞ =	- -/p _t _ =	0.6	α = 0 (x/	R) _{lip} =	3.88	m ₁	/m _∞ = .	0.339)	B ex i t	C _{Ds} leed setting	a =	0.098
M _∞ = \bar{p}_{t_2} RAKE NO.	/p _t _∞ =	0.6 - 0.97	$\alpha = 0 (x/)$ TUBE	R) _{lip} =	3.886 5		$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO	0.339	2	Exit TUBE	C _{Ds} Leed setting	g =(0.098 Closed
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	p _t =	0.6 - 0.970 2 0.978	$\alpha = 0 (x/3)$ TUBE $3 0.994$	R) _{lip} =	3.886 5 0.984	m ₁ 0 Δ; 6 0.913	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ $NO.$	0.339 0.10 1 0.960	2 0.978	Exit TUBE	C _{Ds} leed settina NO.	s =(5 0.972	0.098 Closed 6 0.888
$M_{\infty} = \overline{p}_{tz}$ RAKE NO.	p _t _∞ =	0.6 = 0.970 2 0.978 0.978	α = 0 (x/ TUBE 3 0.994 0.996	R) _{lip} = NO. 4 0.999 1.000	3.886 5 0.984 0.982	^m 1 0 Δ 6 0.913 0.907	$m_{\infty} = \frac{1}{2}$ RAKE NO.	0.339 0.10 1 0.960 0.958	0.978 0.975	TUBE 3 0.995 0.993	C _{Ds} leed setting	5 0.972 0.988	0.098 Closed 6 0.888 0.920
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	1 0.957 0.958 0.958	0.6 - 0.976 2 0.978 0.978 0.977	α = 0 (x/ TUBE 3 0.994 0.996 0.996	R) _{lip} =	3.886 5 0.984 0.982 0.983	 m₁ 0 Δ 0.913 0.907 0.910 	$m_{\infty} = \frac{1}{2}$ RAKE NO. $\frac{1}{2}$	0.339 0.10 1 0.960 0.958 0.961	0.978 0.975 0.982	TUBE 3 0.995 0.993 0.996	C _{De} leed setting NO. 4 1.000 1.000	5 0.972 0.988	0.098 Closed 6 0.888 0.920 0.900
$M_{\infty} = \overline{p}_{t_{z}}$ RAKE NO. 1 3 5	/p _t = 1 0.957 0.958 0.958	0.6 = 0.970 2 0.978 0.978 0.977	$\alpha = 0$ (x/ TUBE 3 0.994 0.996 0.996	R) _{lip} = NO. 4 0.999 1.000 0.999	3.886 5 0.984 0.982 0.983 0.0°	m ₁ 0 Δ; 0.913 0.907 0.910	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.339 0.10 1 0.960 0.958 0.961	0.978 0.975 0.982	TUBE 3 0.995 0.993 0.996	$^{\mathrm{C}_{\mathrm{D}_{\mathcal{E}}}}$ leed setting NO. $^{\mathrm{L}_{4}}$ 1.000 1.000 $^{\mathrm{C}_{\mathrm{D}_{\mathcal{E}}}}$ leed	5 0.972 0.988 0.981	0.098 Closed 6 0.888 0.920 0.900
$M_{\infty} = \overline{p}_{t_{z}}$ RAKE NO. 1 3 5	/p _t = 1 0.957 0.958 0.958	0.6 = 0.970 2 0.978 0.978 0.977	$\alpha = 0$ (x/ TUBE 3 0.994 0.996 0.996	R) _{lip} = NO. 4 0.999 1.000 0.999	3.886 5 0.984 0.982 0.983 0.0°	m ₁ 0 Δ; 0.913 0.907 0.910	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.339 0.10 1 0.960 0.958 0.961	0.978 0.975 0.982	TUBE 3 0.995 0.993 0.996	CD _e Leed setting NO. 4 1.000 1.000	5 0.972 0.988 0.981	0.098 Closed 6 0.888 0.920 0.900
$M_{\infty} = \overline{p}_{t_{z}}$ RAKE NO. 1 3 5	/p _t = 1 0.957 0.958 0.958	0.6 = 0.970 2 0.978 0.978 0.977	$\alpha = 0$ (x/ TUBE 3 0.994 0.996 0.996 $\alpha = 0$ 1 (x/	R) _{lip} = NO. 4 0.999 1.000 0.999	3.886 5 0.984 0.982 0.983 0.0°	m ₁ 0 Δ; 0.913 0.907 0.910	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE	0.339 0.10 1 0.960 0.958 0.961	0.978 0.975 0.982	TUBE 3 0.995 0.993 0.996	CD ₂ Leed setting NO. 4 1.000 1.000 CD ₂ Leed settin	5 0.972 0.988 0.981	0.098 Closed 6 0.888 0.920 0.900
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	/p _t = 1 0.957 0.958 0.958	0.6 = 0.970 2 0.978 0.978 0.977	$\alpha = 0$ (x/ TUBE 3 0.994 0.996 0.996 $\alpha = 0$ 1 (x/	R) _{lip} = NO. 4 0.999 1.000 0.999	3.886 5 0.984 0.982 0.983 0.0°	m ₁ 0 Δ; 0.913 0.907 0.910	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.339 0.10 1 0.960 0.958 0.961	0.978 0.975 0.982	TUBE 3 0.995 0.993 0.996	CD ₂ Leed setting NO. 4 1.000 1.000 CD ₂ Leed settin	5 0.972 0.988 0.981	0.098 Closed 6 0.888 0.920 0.900
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	p _t = 1 0.957 0.958 0.958	0.6 = 0.976 2 0.978 0.978 0.977 0.6 0.98	$\alpha = 0$ (x/ TUBE 3 0.994 0.996 0.996 $\alpha = 0.996$ TUBE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R) _{lip} = NO. 4 0.999 1.000 0.999 'R) _{lip} =	3.886 5 0.984 0.982 0.983 0.0° 3.88	m ₁ 0 Δ 0.913 0.907 0.910 m ₁ 0 Δ	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE NO. RAKE NO.	0.339 0.10 1 0.960 0.958 0.961 0.29 0.09	0.978 0.975 0.982 33	TUBE O.995 O.993 O.996 Exit TUBE	CD _e Leed setting NO. 4 1.000 1.000 CD _e leed settin	5 0.972 0.988 0.981 = 0.	0.098 Closed 6 0.888 0.920 0.900 143 Closed
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	1 0.957 0.958 0.958	0.6 - 0.970 2 0.978 0.977 0.6 - 0.98 2 0.975	$\alpha = 0$ TUBE 3 0.994 0.996 0.996 $\alpha = 1$ TUBE 3 0.987	R) _{lip} = NO. 4 0.999 1.000 0.999 (R) _{lip} = NO. 4	3.886 5 0.984 0.982 0.983 0.0° 3.886 5 0.991	m ₁ 0 Δ 6 0.913 0.907 0.910 m ₁ 0 Δ	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.339 0.10 1 0.960 0.958 0.961 0.29 0.09	0.978 0.975 0.982 33 39	TUBE 3 0.995 0.996 Exit TUBE 3 0.992	CD ₂ Leed setting NO. 4 1.000 1.000 CD ₂ Leed settin	5 0.972 0.988 0.981 = 0.1 g =	0.098 Closed 6 0.888 0.920 0.900 143 Closed

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, ${\tt p_t/p_{t_\infty}}$ - Continued

M _{co} =	<u> </u>	0.6	_ α =		0°	m ₁	$/m_{\infty} =$	0.3	29		$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	=	
Pt;	₂ /p _t ,=	0.95	5 (x/	'R) _{lip} =	4.18	0	19 _{t2} =	0.098		B: exit	leed sett i n	g =C	losed
RAKE NO.								1					
1								0.957					
													0.924
5	0.943	0.949	0.961	0.976	0.965	0.905	.6	0.953	0.963	0.981	0.991	0.969	0.900
${ m M}_{\infty}$	=0	.6	_ α =	=2	.0°	m _i	$/m_{\infty} =$	0.28	37		c_{D}	a =	
₱ _{t₂}	$p_{t_{\infty}} =$	0.93	8_ (x/	R) _{lip} =	4.18	<u> </u>	p _{t2} = 9	0.031		ex i t	leed settin	g =	Closed_
RAKE			TUBE	NO.			RAKE			: TUBE	NO.]
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.943	0.946	0.953	0.955	0.946	0.931	2	0.941	0.944	0.944	0.947	0.944	0.909
	0.934		!	1	1	1	9	0.930	1				
	0.934							0.939	0.940	0.945	0.952	0-940	0.926
M _∞ =	0.0	6	α =	. 2.	.0°	m ₁	$/m_{\infty} =$	0.336	5		$\mathtt{c}_{\mathtt{D}_{i}}$	a =	
•								0.09		ъ.		-	
P _t	/p _{t_∞} =	0.96	1_ (x/	R) _{lip} =	4.030	<u>)</u>	p _{t2} = .	0.09	99	Bi ex i t	leed sett i n	g = _C	losed
•	/p _{t_∞} =	0.96	1_ (x/	R) _{lip} =	4.030	<u>)</u>	p _{t2} = .	0.09	99	Bi ex i t	leed sett i n	g = _C	losed
P _t ₂	p _t _∞ =	0.96	1 (x/ TUBE	R) _{lip} =	4.030) <u>(</u>	Pt2 = RAKE	0.09	2	exit TUBE	leed settin NO.	g = <u>C</u>	losed
Ptz	/p _t =	2	1 (x/ TUBE 3 0.991	R) _{lip} = NO. 4 0.999	4.030 5 0.981	6 0.910	P _{t2} = RAKE	0.09	2	Exit TUBE 3 0.990	NO. 14 0.993	g = <u>C</u>	losed
Ptz	1 0.966 0.952	0.96 2 0.981 0.958	TUBE 3 0.991 0.975	R) _{lip} = NO. 4 0.999 0.987	4.030 5 0.981 0.966	6 0.910 0.904	Pt2 = . RAKE NO. 2	0.09 1 0.967 0.941	2 0.981 0.946	TUBE 3 0.990 0.962	NO. 4 0.993	g = _C: 5 0.958 0.974	losed 6 0.881 0.925
RAKE NO.	1 0.966 0.952 0.951	0.96 2 0.981 0.958 0.959	TUBE 3 0.991 0.975	R) _{lip} = NO. 4 0.999 0.987 0.985	4.030 5 0.981 0.966 0.969	6 0.910 0.904 0.907	Pt2 = RAKE NO. 2 4	0.09 1 0.967 0.941 0.963	2 0.981 0.946 0.975	TUBE 3 0.990 0.962 0.989	NO. 4 0.993 0.980 0.995	g = _C: 5 0.958 0.974	6 0.881 0.925 0.904
RAKE NO. 1 3 5	1 0.966 0.952 0.951	2 0.981 0.958 0.959	TUBE 3 0.991 0.975 0.974 α =	R) _{lip} = NO. 4 0.999 0.987 0.985	4.030 5 0.981 0.966 0.969	6 0.910 0.904 0.907	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.09 1 0.967 0.941	2 0.981 0.946 0.975	TUBE 3 0.990 0.962 0.989	NO. 4 0.993 0.980 0.995	g = C: 5 0.958 0.974 0.969	6 0.881 0.925 0.904
RAKE NO. 1 3 5	P _t _∞ = 1 0.966 0.952 0.951	2 0.981 0.958 0.959	TUBE 3 0.991 0.975 0.974 α =	R) _{lip} = NO. 4 0.999 0.987 0.985 R) _{lip} =	4.030 5 0.981 0.966 0.969	6 0.910 0.904 0.907	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$	0.09 1 0.967 0.941 0.963 0.28	2 0.981 0.946 0.975	TUBE 3 0.990 0.962 0.989	NO. 4 0.993 0.980 0.995 CDetendant	g = C: 5 0.958 0.974 0.969	6 0.881 0.925 0.904
RAKE NO. 1 3 5	P _t _∞ = 1 0.966 0.952 0.951	2 0.981 0.958 0.959	1 (x/ TUBE 3 0.991 0.975 0.974 α =	R) _{lip} = NO. 4 0.999 0.987 0.985 R) _{lip} =	4.030 5 0.981 0.966 0.969	6 0.910 0.904 0.907 mi	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.09 1 0.967 0.941 0.963 0.28	2 0.981 0.946 0.975	TUBE 3 0.990 0.962 0.989 Bexit	NO. 4 0.993 0.980 0.995 CDetendant	g = C: 5 0.958 0.974 0.969	6 0.881 0.925 0.904
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE	1 0.966 0.952 0.951	2 0.981 0.958 0.959 0.6	1 (x/ TUBE 3 0.991 0.975 0.974 α = 5 (x/ TUBE 3	R) _{lip} = NO. 4 0.999 0.987 0.985 R) _{lip} = NO.	4.030 5 0.981 0.966 0.969 2.0° 4.03	6 0.910 0.904 0.907 mi	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.09 1 0.967 0.941 0.963 0.28	2 0.981 0.946 0.975	TUBE 3 0.990 0.962 0.989 Bexit TUBE 3	NO. 4 0.993 0.980 0.995 CDetendant	g = C: 0.958 0.974 0.969 =	6 0.881 0.925 0.904
\bar{P}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{P}_{t_2}$ RAKE NO.	P _t =	2 0.981 0.958 0.959 0.6 0.965	TUBE 3 0.991 0.974 α = 5 (x/ TUBE 3 0.974	R) _{lip} = NO. 4 0.999 0.987 0.985 R) _{lip} = NO. 4	4.030 5 0.981 0.966 0.969 2.0° 4.03	6 0.910 0.904 0.907 min 30 \triangle	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 $p_{t_2} = \frac{1}{2}$ RAKE NO. 2	0.09 1 0.967 0.941 0.963 0.28	2 0.981 0.946 0.975 33	TUBE 3 0.990 0.962 0.989 Exit TUBE 3 0.971	NO. 4 0.993 0.980 0.995 CDescription NO. 4 0.977	g = C: 5 0.958 0.974 0.969 =	losed 6

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt $_{\infty}$ - Continued

* ***	=	.6	_ a =	5	.0°	m ₁ ,	/m _∞ = _	0.32	9		$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	=	
₽ t	₂ /p _t =	0.951	_ (x/	R) _{lip} =	4.180	<u> </u>	p _{t2} = -	0.114		Bl exit s	eed sett in g	g =C	losed
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3		5	6	NO.	1	2	3	4	5	6
1	0.974	0.993	1.000	1.000	0.982	0.903	2	0.965	0.969	0.981	0.989	0.958	0.875
3	0.940												
5	0.941	0.942	0.950	0.958	0.954	0.907	6	0.963	0.970	0.980	0.989	0.964	0.892
M_{∞}	=(0.6	_ α =		5.0°	m _i	/m _∞ = _	0.287			c_{D}	. =	
₽.	₂ /p _{t_∞} =	0 936	(x/	R)=	4 180) ^-	n –	0.046		B: ex i t	leed settin	g = c1	heed
Pt.	2 ^{/ Pt} ∞	0.930	(3.7)	",TID	4.100		^p t2	• -					oseu
RAKE		, ,	TUBE	NO.			RAKE		, ,	TUBE	NO.		
1	1 -1	2	3	4	5	_ 6	110.	1	2	3	4	5	6
1	<u>II</u> .												
3	0.928							1		Ł .		1 1	
5	0.930	0.930	0.932	0.935	0.935	0.923	6	0.943	0.940	0.942	0.944	0.941	0.924
${ m M}_{\infty}$	=(0.6	_ α =	5.	.0°	m <u>i</u>	$/m_{\infty} = $	0.336	j		c_{D}	a. =	
-	/	0.050	1 1	m)	/ O30			0 113	1		leed	a = C1	heen
Pt	/p _t =	0.909	(x/	バノコiヵ ̄	4.050			0.11	<u></u>	CVTO	SC COTI	g 01	Josea
				TTP			Pt2						
RAKE			TUBE				RAKE			TUBE			
RAKE NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	2			5	6
	11	2	TUBE	NO.	5	6	RAKE NO.		2	TUBE	NO.	5	6
NO.	1	2 0.998	TUBE 3	NO. 4 1.000	5	6	RAKE NO.	1	2	TUBE 3 0.993	NO.	5 0.958	6
NO.	0.972	2 0.998 0.951	TUBE 3 1.001 0.961	NO. 4 1.000 0.968	5 0.988 0.959	6 0.907 0.906	RAKE NO. 2	1	2 0.988 0.936	TUBE 3 0.993 0.945	NO. 4 0.995 0.956	5 0.958 0.956	6 0.881 0.930
NO. 1 3 5	0.972 0.952 0.951	2 0.998 0.951 0.952	TUBE 3 1.001 0.961 0.963	NO. 4 1.000 0.968 0.973	5 0.988 0.959 0.962	6 0.907 0.906 0.909	RAKE NO. 2 4 6	1 0.983 0.930 0.983	2 0.988 0.936 0.984	TUBE 3 0.993 0.945 0.994	NO. 4 0.995 0.956 0.997	5 0.958 0.956	6 0.881 0.930 0.893
NO. 1 3 5 M _∞	0.972 0.952	2 0.998 0.951 0.952	TUBE 3 1.001 0.961 0.963 α =	NO. 4 1.000 0.968 0.973	5 0.988 0.959 0.962	6 0.907 0.906 0.909	RAKE NO. 2 4 6	0.983 0.930 0.983	2 0.988 0.936 0.984	TUBE 3 0.993 0.945 0.994	NO. 4 0.995 0.956 0.997	5 0.958 0.956 0.961	6 0.881 0.930 0.893
NO. 1 3 5 M _∞ p̄t	1 0.972 0.952 0.951 =	2 0.998 0.951 0.952	TUBE 3 1.001 0.961 0.963 α = 0 (x/	NO. 4 1.000 0.968 0.973	5 0.988 0.959 0.962	6 0.907 0.906 0.909	RAKE NO. 2 4 6 $/m_{\infty} =$	0.983 0.930 0.983	2 0.988 0.936 0.984	TUBE 3 0.993 0.945 0.994	NO. 4 0.995 0.956 0.997 CD, leed settir	5 0.958 0.956 0.961	6 0.881 0.930 0.893
NO. 1 3 5 M _∞	1 0.972 0.952 0.951 =	2 0.998 0.951 0.952	TUBE 3 1.001 0.961 0.963 α =	NO. 4 1.000 0.968 0.973	5 0.988 0.959 0.962	6 0.907 0.906 0.909	RAKE NO. 2 4 6	0.983 0.930 0.983	2 0.988 0.936 0.984	TUBE 3 0.993 0.945 0.994	NO. 4 0.995 0.956 0.997 CD, leed settir	5 0.958 0.956 0.961	6 0.881 0.930 0.893
NO. 1 3 5 M _∞ p t	1 0.972 0.952 0.951 =	2 0.998 0.951 0.952 0.6 0.960	TUBE 3 1.001 0.961 0.963 α = 0 (x/ TUBE 3	NO. 4 1.000 0.968 0.973 (R) 1.1p	5 0.988 0.959 0.962 5.0° =_4.030	6 0.907 0.906 0.909 	RAKE NO. 2 4 6 $/m_{\infty} =$ RAKE NO.	0.983 0.930 0.983 0.283	2 0.988 0.936 0.984	TUBE 3 0.993 0.945 0.994 Exit TUBE	NO. 14 0.995 0.956 0.997 CD leed settir	5 0.958 0.956 0.961 a =	6 0.881 0.930 0.893
NO. 1 3 5 M _∞ \$\bar{p}_t\$ RAKE NO.	1 0.972 0.952 0.951 =	2 0.998 0.951 0.952 0.6 0.960	TUBE 3 1.001 0.961 0.963 α = 0 (x/ TUBE 3 0.967	NO. 4 1.000 0.968 0.973 (R) 1ip= NO.	5 0.988 0.959 0.962 5.0° 4.030	6 0.907 0.906 0.909 — ^m i 0	RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO. 2	0.983 0.930 0.983 0.283 0.033	2 0.988 0.936 0.984 3	TUBE 3 0.993 0.945 0.994 Exit TUBE 3 0.974	NO. 4 0.995 0.956 0.997 CD settir NO. 4 0.976	5 0.958 0.956 0.961 a =	6 0.881 0.930 0.893

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t} / p_{\rm t_{\infty}}$ - Continued

M _∞ =	=	0.8	_ α =		0.00	m _j	$L/m_{\infty} =$	0.3	32		$\mathtt{c}_{\mathtt{D}_{\!\mathtt{a}}}$	= 0.	074
₱t₂	₂ /p _t , =	0.921	(x/	'R) _{lip} =	<u>4.18</u>	<u>0</u>	\p _{t2} =	0.164		B exit	leed settin	g =	Closed
RAKE			TUBE	e NO.			RAKE			TUBI	E NO.]
NO.	1	2		4	5	6	NO.		2	3	4	5	6
1	0.903	0.922	0.951	0.972	0.945	0.849	2	0.913	0.930	0.961	0.972	0.916	
3	0.912	0.930	0.959	0.975	0.920	0.826	4	0.902	0.917	0.940	0.965	0.949	0.861
5	0.912	0.927	0.952	0.972	0.940	0.838	6	0.913	0.931	0.958	0.973	0.921	0.824
M _∞	=	0.8	_ α =	=0	.00	mi	/m _∞ =	0.29	5		$\mathtt{C}_{\mathtt{D}}$	_ = 0	.098
_	,	• • • •	, ,	-\	/ 10		-	0.010		В	leed	a	
p_{t_2}	/p _t _∞ =	0.903	(x/	R)lip=	4.18	<u>u</u> Δ	p _{t2} = .	0.040		exit	settin	ug = _ C	losed
RAKE			TUBE	NO.			RAKE			TUBE	NO.]
NO.	1	2	_3	4	5	6	NO.	1	2	3] 4	5	6
1	0.899	0.901	0.908	0.914	0.910	0.890	2	0.899	0.905	0.912	0.919	0.910	[
3	0.900	0.903	0.910	0.911	0.907	0.883	4	0.899	0.900	0.906	0.913	0.907	0.892
5	0.898	0.903	0.906	0.913	0.911	0.893	6	0.899	0.903	0.911	0.909	0.905	0.884
<u></u>	<u> </u>	<u> </u>		ــــــــــــــــــــــــــــــــــــــ	!			L		L	1	1	
		<u> </u>	·	<u> </u>	·		~						
M _∞ =	:	0.8	_ α =	0	.0°	mi	/m _∞ =	0.33	8	В	$\mathtt{c}_{\mathtt{D}_{\!c}}$ leed	a = 0	.092
M _∞ =	:	0.8	_ α =	0	.0°	mi	/m _∞ =		8	В	$\mathtt{c}_{\mathtt{D}_{\!s}}$	a = 0	.092
M _∞ =	:	0.8	_ α =	R) _{lip} =	.0°	mi	/m _∞ =	0.33	8	В	C _{D,} leed settin	a = 0	.092
M _∞ =	·	0.8	α =(x/:TUBE	R) _{lip} =	.0° 4.03	m _i	$/m_{\infty} = 0$ $p_{t_2} = 0$ RAKE	0.33	8	B ex i t	C _{D,} leed settin	a = 0	.092 Closed
$M_{\infty} = \overline{P}_{t_2}$ RAKE	/p _{t_∞} =	0.934	α =(x/:	R) _{lip} =	.0° _4.03	m _i 0 Δ	$/m_{\infty} = $ $p_{t_2} = $ RAKE	0.33	2	B exit TUBE	C _D leed settin	g =	.092 Closed
$M_{\infty} = \overline{p}_{t_2}$ RAKE	/p _{t_∞} =	0.8 0.934 2 0.941	α = (x/: TUBE 3 0.972	NO.	.0°4.0350.957	m _i 0 Δ 6 0.850	$m_{\infty} = 1$ $m_{\pm 2} = 1$ $m_{\pm 2} = 1$ $m_{\pm 1} = 1$ $m_{\pm 2} = 1$	0.33	2 0.949	TUBE 3 0.972	C _D leed settin	g =	.092 Closed
$M_{\infty} = \overline{P}_{t_2}$ RAKE NO.	/p _{t_∞} =	0.8 0.934 2 0.941 0.943	α = (x/: TUBE 3 0.972 0.973	NO. 4	.0° 4.03 5 0.957 0.928	m _i 0 Δ 6 0.850 0.839	$m_{\infty} = \frac{1}{2}$ RAKE NO.	0.33 0.169 1 0.933	2 0.949 0.938	TUBE 3 0.972	CDaleed settin	g =	.092 Closed 6
$M_{\infty} = \overline{p}_{t_{\mathcal{S}}}$ RAKE NO.	/pt _∞ = 1 0.922 0.928 0.928	0.8 0.934 2 0.941 0.943 0.944	α = (x/: TUBE 3 0.972 0.973 0.969	R) _{lip} = NO. 4 0.988 0.983 0.985	.0° 4.03 5 0.957 0.928 0.947	m _i 0 Δ 6 0.850 0.839 0.845	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2	0.33 0.169 1 0.933 0.924	2 0.949 0.938 0.947	TUBE 3 0.972 0.967	C _{D₂} leed settin	g =	.092 Closed 6 0.859 0.830
$M_{\infty} = \overline{p}_{t_{\mathcal{Z}}}$ RAKE NO. 1 3 5	p _{t_∞} =	0.8 0.934 2 0.941 0.943 0.944	α = (x/) TUBE 3 0.972 0.973 0.969	R) _{lip} = NO. 4 0.988 0.983 0.985	.0° 4.03 5 0.957 0.928 0.947	m _i 0 Δ 6 0.850 0.839 0.845	$/m_{\infty} = \frac{1}{2}$ RAKE NO. $\frac{1}{4}$ 6	0.33 0.169 1 0.933 0.924 0.925	2 0.949 0.938 0.947	TUBE 3 0.972 0.967 0.970	C _{D₂} leed settin NO. 4 0.982 0.986	g = 0 $g = 0$ 0.922 0.962 0.932 $= 0.1$.092 Closed 6 0.859 0.830
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	p _{t_∞} =	0.8 0.934 2 0.941 0.943 0.944	α = (x/) TUBE 3 0.972 0.973 0.969	R) _{lip} = NO. 4 0.988 0.983 0.985 0.00 R) _{lip} =	.0° 4.03 5 0.957 0.928 0.947	m _i 0 Δ 6 0.850 0.839 0.845	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $p_{t_2} =$ $RAKE$	0.33 0.169 1 0.933 0.924 0.925	2 0.949 0.938 0.947	TUBE 3 0.972 0.967 0.970	CDaleed setting NO. 4 0.982 0.986 0.983 CDaleed setting	g = 0 $g = 0$ 0.922 0.962 0.932 $= 0.1$.092 Closed 6 0.859 0.830
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	p _{t_∞} =	0.8 0.934 2 0.941 0.943 0.944	α = (x/) TUBE 3 0.972 0.973 0.969 α = (x/)	R) _{lip} = NO. 4 0.988 0.983 0.985 0.00 R) _{lip} =	.0° 4.03 5 0.957 0.928 0.947	m _i 0 Δ 6 0.850 0.839 0.845	$/m_{\infty} =$ $p_{t_2} =$ NO 2 4 6 $/m_{\infty} =$ $p_{t_2} =$	0.33 0.169 1 0.933 0.924 0.925	2 0.949 0.938 0.947	TUBE 3 0.972 0.967 0.970 B exit	CDaleed setting NO. 4 0.982 0.986 0.983 CDaleed setting	g = 0 $g = 0$ 0.922 0.962 0.932 $= 0.1$.092 Closed 6 0.859 0.830
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	/p _{t_∞} =	2 0.941 0.943 0.944 0.8 0.945	α = (x/) TUBE 3 0.972 0.973 0.969 α = (x/) TUBE 3	R) _{lip} = NO. 4 0.988 0.983 0.985 0.0 R) _{lip} = NO.	.0° 4.03 5 0.957 0.928 0.947 0° 4.030	m _i 0	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.33 0.169 1 0.933 0.924 0.925 0.292	2 0.949 0.938 0.947	TUBE 3 0.972 0.967 0.970 Bexit TUBE	CDaleed setting NO. 4 0.982 0.986 0.983 CDaleed setting NO. 4	5 0.922 0.962 0.932 = 0.3 g =	.092 Closed 6 0.859 0.830
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	/pt _∞ = 1 0.922 0.928 0.928 /pt _∞ =	0.8 0.934 2 0.941 0.943 0.944 0.8 0.945	α = (x/) TUBE 3 0.972 0.973 0.969 α = (x/) TUBE 3 0.951	R) _{lip} = NO. 4 0.988 0.983 0.985	.0° 4.03 5 0.957 0.928 0.947 0° 4.030 5 0.958	m _i 0	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO. 2 RAKE NO.	0.33 0.169 1 0.933 0.924 0.925 0.292 0.038	2 0.949 0.938 0.947 2	TUBE 3 0.972 0.967 0.970 B exit TUBE 3 0.954	CDaleed setting NO. 4 0.982 0.986 0.983 CDaleed setting NO. 4 0.963	5 0.922 0.962 0.932 = 0.1 g = 0.1	.092 Closed 6 0.859 0.830 124 Losed

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt_ ∞ - Continued

M _∞ =		8.0	<u>α</u> =	0	.0°	m ₁ ,	/m _∞ = _	0.339)		$\mathtt{c}_{\mathtt{D}_{\!\mathbf{a}}}$	= 0.1	.23
₱ _{t2}	/p _t ,=	0.944	_ (x/:	R) _{lip} =	3.880	<u> </u>	p _{t2} =_	0.167		Bl exit s	eed sett in é	g = <u>C1</u>	osed
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	4	5	6
1]	0.930	0.958	0.986	0.996	0.961	0.854	2	0.934	0.960	0.988	0.993	0.929	
3	0.932	0.957	0.985	0.994	0.942	0.841	4	0.930	0.959	0.988	0.997	0.966	0.864
5	0.931	0.960	0.986	0.996	0.954	0.847	6	0.933	0.961	0.989	0.995	0.944	0.839
M _∞ =	=	8.0	_ α =	·	0.0°	m ₁	/m _∞ = .	0.291	L		$\mathtt{c}_{\mathtt{D}_{\!i}}$	a =(0.167
$ar{\mathtt{p}}_{\mathtt{t}_{2}}$	/p _{tm} =	0.969	_ (x/	R) _{lip} =	3.88	80 A	p _t , = -	0.066		B: ex i t	leed settin	g = <u>c</u> 1	osed
DAVE	1		יים מוז וייי	NO.			RAKE	1		TUBE			
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	Ti and the same of	i '	i i	ī	Ī	0.953	ī "	Ti -	î —	ī ——		0.982	-
3	0.946	0.961	0.983	0.996	0.983	0.940	14	0.947	0.962	0.984	0.997	0.989	0.966
5	0.945	0.962	0.981	0.993	0.989	0.949	6	0.947	0.963	0.985	0.994	0.983	0.933
M _∞ =		8.0	_ α =	·	2.00	m _i	$/m_{\infty} =$	0.332	2		$\mathtt{c}_{\mathtt{D}}$	a =	· -
						_ ^m i				B	leed		
						^m i				B	leed		
	/p _t _ =	0.918	(x/ TUBE	R) _{lip} =	4.180	<u>)</u> <u>\</u>	P _{t2} = .	0.180		exit TUBE	leed sett i n NO.		
₽ _{t₂}	/p _t _ =	0.918	(x/ TUBE		4.180	<u>)</u> <u>\</u>	P _{t2} = .	0.180		exit TUBE	leed sett i n NO.		
P _t	_/p _{t∞} =	0.918	(x/ TUBE	R) _{lip} =	4.180	<u>)</u> <u>\</u>	Pt ₂ = RAKE	0.180	2	exit TUBE	leed settin NO.	g = <u>C1</u>	osed 6
RAKE	p _t =	2 0.948	(x/ TUBE 3 0.975	R) _{lip} = NO. 4 0.987	5 0.952	<u> </u>	Pt ₂ = RAKE	0.180	2	Exit TUBE 3 0.974	NO. 4 0.981	g = <u>C1</u> 5 0.911	6
RAKE NO.	/Pt _w =	0.918 2 0.948 0.912	TUBE 3 0.975 0.932	R) _{lip} = RNO. 4 0.987 0.952	4.180 5 0.952 0.922	0 △ △ 6 0.838	Pt ₂ = RAKE NO.	0.180	2 0.946 0.896	TUBE 3 0.974 0.915	NO. 4 0.981	g = <u>C1</u> 5 0.911 0.934	6 0.872
RAKE NO.	p _t _∞ = 1 0.925 0.902 0.898	2 0.948 0.912 0.905	TUBE 3 0.975 0.932 0.934	NO. 4 0.987 0.952 0.950	4.180 5 0.952 0.922 0.931	6 0.838 0.829 0.842	Pt ₂ = RAKE NO. 2 4	0.180 1 0.922 0.885 0.920	2 0.946 0.896 0.941	TUBE 3 0.974 0.915 0.967	NO. 4 0.981 0.977	g = <u>C1</u> 5 0.911 0.934	6 0.872 0.822
\overline{p}_{t_2} RAKE NO. 1 3 5	p _t _∞ = 1 0.925 0.902 0.898	2 0.948 0.912 0.905	TUBE 3 0.975 0.932 0.934 α =	R) _{lip} = NO. 0.987 0.952 0.950	5 0.952 0.922 0.931	6 0.838 0.829 0.842	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.180 1 0.922 0.885 0.920 0.295	2 0.946 0.896 0.941	TUBE 3 0.974 0.915 0.967	NO. 4 0.981 0.929 0.977	g = C1 5 0.911 0.934 0.915	6 0.872 0.822
RAKE NO. 1 3 5 M _∞ =	p _t _∞ = 1 0.925 0.902 0.898	2 0.948 0.912 0.905	TUBE 3 0.975 0.932 0.934 α = (x/	R) _{lip} = NO. 0.987 0.952 0.950 2. (R) _{lip} =	5 0.952 0.922 0.931	6 0.838 0.829 0.842	$p_{t_2} =$ RAKE NO. 2 4 6 $/m_{\infty} =$ $p_{t_2} =$	0.180 1 0.922 0.885 0.920 0.295	2 0.946 0.896 0.941	TUBE 3 0.974 0.915 0.967	NO. 4 0.981 0.929 0.977 CD leed settin	g = C1 5 0.911 0.934 0.915	6 0.872 0.822
\overline{p}_{t_2} RAKE NO. 1 3 5	p _t _∞ = 1 0.925 0.902 0.898	2 0.948 0.912 0.905 0.8	TUBE 3 0.975 0.932 0.934 α = (x/ TUBE	R) _{lip} = NO. 0.987 0.952 0.950	5 0.952 0.922 0.931	6 0.838 0.829 0.842 m ₁	$p_{t_2} = \frac{1}{2}$ RAKE NO. 2 4 6	0.180 1 0.922 0.885 0.920 0.295	2 0.946 0.896 0.941	TUBE 3 0.974 0.915 0.967	NO. 4 0.981 0.929 0.977 CD leed settin	g = C1 5 0.911 0.934 0.915	6 0.872 0.822
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO.	1 0.925 0.902 0.898	2 0.948 0.912 0.905 0.8 0.903	TUBE 3 0.975 0.932 0.934 α = (x/ TUBE 3	R) _{lip} = NO. 0.987 0.952 0.950 2. (R) _{lip} = NO.	5 0.952 0.922 0.931 .0° 4.18	6 0.838 0.829 0.842 mi	$P_{t_2} =$ RAKE NO. 2 4 6 $/m_{\infty} =$ RAKE NO.	0.180 1 0.922 0.885 0.920 0.05	2 0.946 0.896 0.941	TUBE 3 0.974 0.915 0.967 Exit TUBE	NO. 4 0.981 0.929 0.977 CD leed settin	g = C1 5 0.911 0.934 0.915 a = C:	6 0.872 0.822
RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1	1 0.925 0.902 0.898 - /Pt_ =	2 0.948 0.912 0.905 0.8 0.903	TUBE 3 0.975 0.932 0.934 α = (x/ TUBE 3 0.922	R) _{lip} = NO. 4 0.987 0.952 0.950 2. (R) _{lip} = NO. 4 0.928	5 0.952 0.922 0.931 .0° 4.18	6 0.838 0.829 0.842 m1 80 6 0.893	$P_{t_2} = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $A = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $RAKE = \frac{1}{2}$ $RAKE = \frac{1}{2}$	0.180 1 0.922 0.885 0.920 0.05	2 0.946 0.896 0.941 0	TUBE 3 0.974 0.915 0.967 Exit	NO. 4 0.981 0.929 0.977 CD settin	g =C1 5 0.911 0.934 0.915 a =C 5 0.909	6 0.872 0.822
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO. 1 3 3	1 0.925 0.902 0.898 - () 2/p _t = 0.909 0.893	2 0.948 0.912 0.905 0.8 0.903	TUBE 3 0.975 0.932 0.934 α = (x/ TUBE 3 0.922 0.904	R) _{lip} = NO. 4 0.987 0.952 0.950 2. (R) _{lip} = NO. 4 0.928 0.910	5 0.952 0.922 0.931 .0° 4.18 5 0.921 0.903	6 0.838 0.829 0.842 mi	$P_{t_{\mathcal{S}}} = \frac{1}{2}$ $RAKE$ $NO.$ 2 4 6 $/m_{\infty} = \frac{1}{2}$ $RAKE$ $NO.$ 2 4	0.180 1 0.922 0.885 0.920 0.055 1 0.904 0.889	2 0.946 0.896 0.941 5 0	TUBE 3 0.974 0.915 0.967 Exit TUBE 3 0.915 0.898	NO. 4 0.981 0.929 0.977 CD leed settin	g = C1 5 0.911 0.934 0.915 = C: 5 0.909 0.898	6 0.872 0.822

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, pt/pt_ ∞ - Continued

M _∞ =	:(8.0	_ α =	2	.0°	m _i	/m _∞ = 1	0.338			$\mathtt{c}_{\mathtt{Da}}$	=	
₱t₂	$p_{t_{\infty}} =$	0.93	2_ (x/	R) _{lip} =	4.030	<u>)</u>	.p _{t2} =	0.180)		Leed sett in g	g =C	losed
RAKE NO.	1	2	TUBE	NO.	5	[6	RAKE NO.	1	2	TUBE	NO.	5	6
1	0.950			÷ ' '	i	7	n	0.946	Ĭ	ĭ	1	Ī	1
3	-		7			I 1	п	n	I .	T			0.872
5	0.917	0.930	0.956	0.972	0.936	0.843	6	0.943	0.955	0.980	0.984	0.923	0.828
M _∞ :	=C	.8	α =	2.	00	mi	/m _∞ = .	0.292	<u>.</u>	B	$^{ m C}_{ m D_{\!\it z}}$ leed	a =	
$ar{\mathtt{p}}_{\mathtt{t}_{2}}$	$/p_{t_{\infty}} =$	0.946	_ (x/	R) _{lip} =	4.030	<u>)</u>	p _{t2} = -	0.049)	exit	leed settin	g = <u>(</u>	Closed
RAKE			TUBE	NO.	•		RAKE			TUBE			
NO.	1	2	3	14	5 ,	6	NO.	1.	2	3_	4	5 .	6
1_	0.945	0.951	0.964	0.972	0,966	0.939	2 .	0.941	0.945	0.958	0.969	0.960	ļ
	0.932						<u>.</u>	#	}	÷	• :	‡	ē -t
_	0.933	0.936	0.944	0.951	0.954	0.933	6	0.945	0.948	0.959	0.964	0.959	0.926
	<u>u</u> .							ц	ı	1		•	
	<u> </u>			·			•	•	•	•	•	•	• • •
M _∞ =	<u> </u>	8.8	α =	5	.0°	m_i	/m _∞ =	0.332		В:	•	a =	
M _∞ =	<u> </u>	8.8	α =	R) _{lip} =	.0°	m_i	/m _∞ =	0.332		B. exit	C _{Dg} Leed	a =	
M _∞ =	<u> </u>	0.912	α =	R) _{lip} =	4.180	m _i	$/m_{\infty} = \frac{1}{2}$ $p_{t_2} = \frac{1}{2}$ RAKE	0.332	2	B: exit TUBE	C _{D,} leed settin	g = <u>Cl</u>	osed
$M_{\infty} = \overline{p}_{t_2}$ RAKE	=0 _/p _{t_\infty} =	0.912	α = 2 (x/: TUBE	R) _{lip} =	.0° _4.180	^m i) Δ	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO .	0.332	2	B. exit	C _{D,} leed settin	g = <u>Cl</u>	osed
$M_{\infty} = \overline{p}_{t_2}$ RAKE	=0 /p_t =	0.912 2 0.986	α = 2 (x/2 TUBE 3 0.998	NO. 4	.0° _4.180 _5 _0.964	m _i	$m_{\infty} = 1$	0.332	2 2 0.943	exit TUBE 3 0.963	C _D leed settin	g = <u>C1</u> 5 0.908	osed
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	p _t = 0	0.912 2 0.986 0.897	α = 2 (x/) TUBE 3 0.998 0.913	NO. 1.000 0.918	4.180 5 0.964 0.901	m _i	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2	0.332 0.20 1 0.943 0.866	2 0.943 0.871	TUBE 3 0.963 0.893	C _D leed settin	g = <u>Cl</u> 5 0.908	osed 6 0.861
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3	$p_{t_{\infty}} = 0$ $p_{t_{\infty}} = $	2 0.986 0.897 0.897	α = 2 (x/ TUBE 3 0.998 0.913 0.906	NO. 4 1.000 0.918 0.919	.0° 4.180 5 0.964 0.901 0.911	m _i 6 0.832 0.840 0.846	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6	0.332 0.20 1 0.943 0.866 0.940	2 0.943 0.871 0.941	TUBE 3 0.963 0.893 0.961	C _D leed settin	g = <u>Cl</u> 5 0.908	osed 6 0.861 0.816
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	1 0.961 0.898	0.912 2 0.986 0.897 0.897	α = 2 (x/ TUBE 3 0.998 0.913 0.906	NO. 4 1.000 0.918 0.919	4.180 5 0.964 0.901 0.911	m _i 6 0.832 0.840 0.846	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$	0.332 0.20 1 0.943 0.866 0.940	2 0.943 0.871 0.941	TUBE 3 0.963 0.893 0.961	C _D , leed settin	g = g =5 b.908 b.896 b.913	osed 6 0.861 0.816
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	1 0.961 0.898 0.899	0.912 2 0.986 0.897 0.897	α = 2 (x/ TUBE 3 0.998 0.913 0.906	NO. 4 1.000 0.918 0.919	4.180 5 0.964 0.901 0.911	m _i 6 0.832 0.840 0.846	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$	0.332 0.20 1 0.943 0.866 0.940	2 0.943 0.871 0.941	TUBE 3 0.963 0.893 0.961	C _D leed settin NO. 14 0.975 0.907 0.974 CDaleed settin	g = g =5 b.908 b.896 b.913	osed 6 0.861 0.816
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	1 0.961 0.898 0.899	0.912 2 0.986 0.897 0.897	α = (x/) TUBE 3 0.998 0.913 0.906 α = (x/)	NO. 4 1.000 0.918 0.919	4.180 5 0.964 0.901 0.911	m _i 6 0.832 0.840 0.846	$/m_{\infty} =$ $P_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $p_{t_2} =$	0.332 0.20 1 0.943 0.866 0.940	2 0.943 0.871 0.941	TUBE 3 0.963 0.893 0.961 Bexit	C _D leed settin NO. 14 0.975 0.907 0.974 CDaleed settin	g = g =5 b.908 b.896 b.913	osed 6 0.861 0.816
$M_{\infty} = \overline{P}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{P}_{t_2}$ RAKE NO.	Delta Delt	2 0.986 0.897 0.897 .8	α = (x/) TUBE 3 0.998 0.913 0.906 α = (x/) TUBE 3	NO. 1.000 0.918 0.919 5. R) _{lip} = NO. 4	.0° 4.180 5 0.964 0.901 0.911 0° 4.18	m _i 6 0.832 0.840 0.846 m ₁ 6	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.332 0.20 1 0.943 0.866 0.940 0.295 0.075	2 0.943 0.871 0.941	TUBE TUBE 3 0.963 0.961 Bexit TUBE	CDaleed setting NO. 14 0.975 0.907 0.974 CDaleed setting NO.	g = _C1 5 0.908 0.896 0.913 =	osed 6 0.861 0.816
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$ RAKE	1 0.961 0.898 0.899 0.2/p _t =	2 0.986 0.897 0.897 .8 0.896	α = 2 (x/) TUBE 3 0.998 0.913 0.906 α = (x/) TUBE 3 0.937	NO. 1.000 0.918 0.919 5. R) _{lip} =	.0° 4.180 5 0.964 0.901 0.911 0° 4.18 5 0.933	m ₁ 6 0.832 0.840 0.846 m ₁ 6 0.901	$/m_{\infty} =$ $P_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $P_{t_2} =$ $RAKE$ NO . 2	0.332 0.20 1 0.943 0.866 0.940 0.295 0.075	2 0.943 0.871 0.941 2 0.902	TUBE 3 0.963 0.961 Bexit TUBE 3 0.905	CDeleed setting NO. 14 0.975 0.907 0.974 CDeleed setting NO. 14 0.911	g = C1 5 0.908 0.913 a = g = C 0.902	osed 6 0.861 0.816

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $\mathtt{p_t/p_{t_\infty}}$ - Continued

$M_{\infty} =$		8.0	<u>α</u> =	5.	00	m _i	$/m_{\infty} = 1$	0.33	8		$\mathtt{c}_{\mathtt{D}_{\!\mathtt{a}}}$	=	
\bar{p}_{t_2}	$/p_{t_{\infty}} =$	0,929	(x/	R) _{lip} =	4.030	<u>)</u>	p _{t2} =_	0.194			eed setting	g =	losed_
RAKE	ı		TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.965	0.996	0.999	1.000	0.976	0.845	2	0.970	0.974	0.986	0.987	0.920	
3	0.920	0.917	0.930	0.947	0.917	0.836	4	0.880	0.890	0.903	0.922	0.922	0.877
5	0.917	0.917	0.934	0.948	0.927	0.846	6	0.968	0.974	0.990	0.987	0.920	0.820
M _∞ =	=(8.0	α =	5.	.0°	_ mi	/m _∞ = _	0.29	2		c_{D}	=	
										B.	leed		
						<u>30</u> Δ	_						
RAKE			TUBE	NO.		6	RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.934	0.935	0.939	0.941	0.932	0.922	2	0.949	0.955	0.962	0.970	0.950	
3	0,926	0.927	0.931	0.939	0.934	0.917	4	0.917	0.921	0.928	0.933	0.930	0.915
[5	0.926	0.928	0.930	0.934	0.938	0.921	6	0.948	0.950	0.957	0.970	0.952	0.911
M _∞ =	1	L.0	_ α =	0.0)°	m _i	$/m_{\infty} = 1$	0.323	3		$\mathtt{C}_{\mathrm{D}_{t}}$	a =0	.124_
						m _i				В:	leed	-	
										В:	leed	-	
P _t	/p _t =	0.868	3_ (x/1	R) _{lip} =	4.180	<u>)</u> Δ ₁	Pt ₂ = -	0.175	j <u>-</u>	exit TUBE	leed settin	g = _ (
P _t	/p _t =	0.868	3_ (x/1	R) _{lip} =	4.180		Pt ₂ = -	0.175	j <u>-</u>	exit TUBE	leed settin	g = _ (
P _{t2}	/p _t =	0.868	TUBE	R) _{lip} =	4. 180	<u>)</u> Δ ₁	Pt2 = - RAKE NO.	0.175	2	exit TUBE	NO.	g = _ (Closed 6
Ptz	/p _t =	0.868 2 0.891	TUBE 3 0.900	NO. 4 0.911	4.180 5 0.864	<u>0</u> Δ ₁	Pt? = - RAKE NO.	0.175	2	TUBE	NO.	g =(5 0.839	6
RAKE NO.	$p_{t_{\infty}} = 1$ 0.883 0.882	0.868 2 0.891 0.895	TUBE 3 0.900 0.907	NO. 4 0.911 0.908	5 0.864 0.858	6 0.772	Pt2 = - RAKE NO. 2	0.175 1 0.888 0.879	2 0,896 0.884	TUBE 3 0.907 0.898	NO. 4 0.908	g =	6 0.782
RAKE NO.	/p _{t_∞} = 1	0.868 2 0.891 0.895 0.894	TUBE 3 0.900 0.907 0.911	NO. 4 0.911 0.908 0.913	5 0.864 0.858 0.852	6 0.772 0.764 0.767	Pt ₂ = - RAKE NO. 2 4	0.175 1 0.888 0.879 0.879	2 0,896 0.884 0.891	TUBE 3 0.907 0.898 0.912	NO. 4 0.908 0.908 0.909	5 0.839 0.870 0.849	6 0.782 0.761
\overline{P}_{tz} RAKE NO. 1 3 5	/p _{t_∞} = 0.883 0.882 0.883	0.868 0.891 0.895 0.894	TUBE 3 0.900 0.907 0.911 α =	NO. 4 0.911 0.908 0.913	5 0.864 0.858 0.852	6 0.772 0.764 0.767	$Pt_{2} = -\frac{1}{2}$ RAKE NO. 2 4 6 $/m_{\infty} = -\frac{1}{2}$	0.175 1 0.888 0.879 0.879	2 0,896 0.884 0.891	TUBE 3 0.907 0.898 0.912	NO. 4 0.908 0.908 0.909	g =	6 0.782 0.761
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$	/p _{t_∞} = 0.883 0.882 0.883	0.868 0.891 0.895 0.894	TUBE 3 0.900 0.907 0.911 α = (x/	NO. 4 0.911 0.908 0.913 0. R) _{1ip} =	5 0.864 0.858 0.852	6 0.772 0.764 0.767	Pt ₂ = - RAKE NO. 2 4 6 $/m_{\infty}$ = -	0.175 1 0.888 0.879 0.879	2 0,896 0.884 0.891	TUBE 3 0.907 0.898 0.912 B exit	NO. 4 0.908 0.908 0.909 CDescription	g =	6 0.782 0.761
\overline{P}_{tz} RAKE NO. 1 3 5	/p _{t_∞} = 0.883 0.882 0.883	0.868 0.891 0.895 0.894	TUBE 3 0.900 0.907 0.911 α =	NO. 4 0.911 0.908 0.913 0. R) _{1ip} =	5 0.864 0.858 0.852	6 0.772 0.764 0.767	$Pt_{2} = -\frac{1}{2}$ RAKE NO. 2 4 6 $/m_{\infty} = -\frac{1}{2}$	0.175 1 0.888 0.879 0.879	2 0,896 0.884 0.891	TUBE 3 0.907 0.898 0.912	NO. 4 0.908 0.908 0.909 CDescription	g =	6 0.782 0.761
\bar{P}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{P}_{t_2}$ RAKE NO.	/p _{t_w} = 0.883 0.882 0.883 /p _{t_w} =	0.868 2 0.891 0.895 0.894	TUBE 3 0.900 0.907 0.911 α = (x/TUBE)	NO. 4 0.911 0.908 0.913 0. R) lip= NO. 4	5 0.864 0.858 0.852 4.180	6 0.772 0.764 0.767 	Pt ₂ = - RAKE NO. 2 4 6 m_{∞} = RAKE NO.	0.175 1 0.888 0.879 0.879 0.299 0.051	2 0,896 0.884 0.891	TUBE 3 0.907 0.898 0.912 Bexit TUBE 3	NO. 4 0.908 0.908 0.909 CDe settin	5 0.839 0.870 0.849 a = 0 ag =	6 0.782 0.761 .145
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	/p _{t_∞} = 0.883 0.882 0.883 /p _{t_∞} = 1 0.879	0.868 2 0.891 0.895 0.894 1.0 0.884	TUBE 3 0.900 0.907 0.911 α = (x/ TUBE 3 0.893	R) _{lip} = NO. 4 0.911 0.908 0.913 0. R) _{lip} = NO. 4 0.903	4.180 5 0.864 0.858 0.852 .0° 4.180 5 0.896	6 0.772 0.764 0.767 	Pt ₂ = - RAKE NO. 2 4 6 m_{∞} = - RAKE NO. 2 2	0.175 1 0.888 0.879 0.879 0.299 0.051	2 0,896 0.884 0.891 2 0.884	TUBE 3 0.907 0.898 0.912 Bexit TUBE 3 0.893	NO. 4 0.908 0.908 0.909 CDe settin	g =	6 0.782 0.761 .145 Closed
\bar{P}_{t_2} RAKE NO. 1 3 5 \bar{P}_{t_2} RAKE NO. 1 3 3 3	/p _t = 1	0.868 2 0.891 0.895 0.894 1.0 0.884	TUBE 3 0.900 0.907 0.911 α = (x/ TUBE 3 0.893 0.892	R) _{lip} = NO. 4 0.911 0.908 0.913 0. R) _{lip} = NO. 4 0.903 0.894	4.180 5 0.864 0.858 0.852 4.180 5 0.896 0.892	6 0.772 0.764 0.767 	Pt ₂ = - RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2 4 4	0.175 1 0.888 0.879 0.879 0.051 1 0.879 0.876	2 0,896 0.884 0.891 2 0.884 0.879	TUBE 3 0.907 0.898 0.912 Bexit TUBE 3 0.893 0.887	NO. 4 0.908 0.908 0.909 CDe settin	5 0.839 0.870 0.849 a = 0 0.893 0.893	6 0.782 0.761 .145 Closed 6 0.861

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t} /\!\!\!/ p_{\rm t_{\infty}}$ - Continued

M _∞ =	·	1.0	α =	·	0.0°	m _i	$/m_{\infty} =$	0.33	3		CDs	. =	0.138
₱t₂	_/p _t _ =	0.908	(x/	'R) _{lip} =	4.03	<u>0</u> 2	\p _{t2} =	0.199		B: exit	leed settin	g = <u>C1</u>	osed
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2		4	5	6	NO.	1	2	3	4	5	6
1	0.924	0.935	0.958	0.964	0.907	0.794	2	0.926	0.937	0.958	0.957	0.874	
3	0.925	0.934	0.953	0.958	0.880	0.785	14	0.915	0.934	0.950	0.956	0.910	0.805
5	0.925	0.939	0.962	0.958	0.889	0.787	6	0.924	0.934	0.964	0.960	0.878	0.783
M_{∞}	=	1.0	_ α =	=0.	0°	m _i	/m _∞ =	0.30	3	T.	ിക്കദ്		.178
₽ _{t2}	/p _{t_∞} =	0.934	(x/	R) _{lip} =	4.03	0_ Δ	p _{t2} = .	0.05	6	ex i t	settir	ng =	Closed
RAKE			TUBE	NO.			RAKE	u		TUBE]
NO.	1		3	4	5	6	-	1	2	3_	4	5	6
1	0.923	0.929	0.939	0.955	0.951	0.922	2	0.923	0.930	0.941	0.957	0.946	<u> </u>
3	0.922	0.931	0.942	0.950	0.948	0.909	4	0.923	0.931	0.946	0.953	0.950	0.917
I -	022	022	0 0/5	n 951	0.950	0.908	6	0.922	0.933	ln 944	0 953	0 946	In 905 I
5	0.922	0.932	0.945	0.731	0.330	0.700		10.722	0.333	10.244	10.333	0.540	0.505
	<u> </u>							0.29	<u></u>	L	<u> </u>	1	L
M _∞ =		1.0	α =	2.0)°	m _i	/m _∞ =	0.29	9	В:	C _D leed	a =	<u>-</u>
M _∞ =		1.0	α =	2.0)°	m _i	/m _∞ =	0.29	9	В:	C _D leed	a =	L
M _∞ =		1.0	α =	2.0 R) _{lip} =)°	m _i	/m _∞ =	0.29	9	В:	C _D leed settin	a =	<u>-</u>
$M_{\infty} = \bar{p}_{t_2}$	/p _t =	1.0	α = (x/:	2.0 R) _{lip} =)°	m _i	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$	0.29	9	B: exit TUBE	C _D leed settin	a =	<u>-</u>
$M_{\infty} = \overline{p}_{t_2}$ RAKE	/p _{t_∞} =	0.883	α =(x/: TUBE	2.0 R) _{lip} =	4.180 5	m _i) Δ	$/m_{\infty} =$ $p_{t_2} =$ RAKE	0.29	2	Exit TUBE	C _D leed settin	a = g = 5	Closed
$M_{\infty} = \overline{p}_{tz}$ RAKE NO.	/p _t =	0.883 2 0.896	α =(x/:	2.(R) _{lip} =	5 0.911	m _i) Δ: 6 0.874	$/m_{\infty} =$ $p_{t_2} = RAKE$ NO .	0.29	2	Exit TUBE 3 0.897	CD leed settin	a = g = 5 0.894	Closed 6
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO.	/p _t =	2 0.896 0.869	α = (x/: TUBE 3 0.909 0.885	2.0 R) _{lip} = NO.	5 0.911 0.883	m _i	$/m_{\infty} =$ $p_{t_2} =$ RAKE NO.	0.29 0.070 1 0.883	2 0,886 0,865	TUBE 3 0.897 0.880	CD leed settin NO.	a = g = 5 0.894 0.879	Closed 6 0.857
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5	/p _{t_∞} = 1 0.891 0.871 0.871	2 0.896 0.869 0.878	α = (x/: TUBE 3 0.909 0.885 0.887	2.0 R) _{lip} = NO. 4 0.919 0.892 0.888	5 0.911 0.883 0.888	m _i 6 0.874 0.857 0.859	$/m_{\infty} =$ $p_{t_2} = -$ RAKE NO. 2 4	0.29 0.070 1 0.883 0.867	2 0,886 0,865 0,889	TUBE 3 0.897 0.880 0.897	CD leed settin NO. 4 0.906 0.882 0.905	a = g = 5 0.894 0.879 0.896	Closed 6 0.857
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5	/p _{t_∞} = 1 0.891 0.871 0.871	2 0.896 0.869 0.878	α = (x/: TUBE 3 0.909 0.885 0.887	2.0 R) _{lip} = NO. 4 0.919 0.892 0.888	5 0.911 0.883 0.888	m _i 6 0.874 0.857 0.859	$/m_{\infty} =$ $p_{t_2} = -$ RAKE NO. 2 4	0.29 0.070 1 0.883 0.867 0.884	2 0,886 0,865 0,889	TUBE 3 0.897 0.880 0.897	CD leed settin NO. 4 0.906 0.882	g =	Closed 6 0.857
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{tz}$ RAKE	/p _t =	2 0.896 0.869 0.878	α = (x/: TUBE 3 0.909 0.885 0.887	2.0 R) _{lip} = NO. 4 0.919 0.892 0.888	5 0.911 0.883 0.888	m _i 6 0.874 0.857 0.859	$/m_{\infty} =$ $p_{t_2} = RAKE$ NO . 2 4 6 $/m_{\infty} = p_{t_2} = RAKE$	0.29 0.070 1 0.883 0.867 0.884	2 0,886 0,865 0,889	TUBE 3 0.897 0.880 0.897	CD leed settin NO. 4 0.906 0.882 0.905 CDe settin	g =	Closed 6 0.857
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	/p _t =	2 0.896 0.869 0.878	α = (x/: TÜBE 3 0.909 0.885 0.887 α = (x/	2.0 R) _{lip} = NO. 4 0.919 0.892 0.888	5 0.911 0.883 0.888	m _i 6 0.874 0.857 0.859	$/m_{\infty} =$ $p_{t_2} = RAKE$ NO . 2 4 6 $/m_{\infty} = p_{t_2} = -$	0.29 0.070 1 0.883 0.867 0.884	2 0,886 0,865 0,889	TUBE 3 0.897 0.880 0.897 Bexit	CD leed settin NO. 4 0.906 0.882 0.905 CDe settin	g =	Closed 6 0.857
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{tz}$ RAKE	/p _t = 1 0.891 0.871 0.871 /p _t = 1	2 0.896 0.869 0.878 .0	α = (x/: TUBE 3 0.909 0.885 0.887 α = (x/: TUBE 3	2.0 R) _{lip} = NO. 4 0.919 0.892 0.888 2 R) _{lip} = NO.	5 0.911 0.883 0.888 .0° 4.03	m _i 6 0.874 0.857 0.859 m _i 6	$/m_{\infty} =$ $p_{t_2} = RAKE$ NO . 2 4 6 $/m_{\infty} = p_{t_2} = RAKE$	0.29 0.070 1 0.883 0.867 0.884 0.303	2 0,886 0,865 0,889	TUBE 3 0.897 0.880 0.897 Bexit TUBE	CD leed settin NO. 4 0.906 0.882 0.905 CD _e settin	a = g = 5 0.894 0.879 0.896 a =Clo	Closed 6 0.857 0.857 osed 6
$M_{\infty} = \overline{p}_{tz}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{tz}$ RAKE NO.	/Pt _∞ = 1 0.891 0.871 0.871 /Pt _∞ =	2 0.896 0.869 0.878 .0 0.931	α = (x/: TÜBE 3 0.909 0.885 0.887 α = (x/ TÜBE 3 0.953	2.0 R) _{lip} = NO. 4 0.919 0.892 0.888 2 R) _{lip} = NO. 4	5 0.911 0.883 0.888 .0° 4.03	m _i 6 0.874 0.857 0.859 m ₁ 6 0.928	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $p_{t_2} =$ $P_{t_2} =$ $P_{t_2} =$ $P_{t_3} =$ $P_{t_3} =$ $P_{t_3} =$ $P_{t_3} =$ $P_{t_3} =$ $P_{t_3} =$	0.29 0.070 1 0.883 0.867 0.884 0.303 0.07	2 0.886 0.865 0.889	TUBE 3 0.897 0.880 0.897 Bexit TUBE 3	CD leed settin NO. 4 0.906 0.882 0.905 CD _e settin NO. 4	g = g = 5 0.894 0.879 0.896 g = g =	Closed 6 0.857 0.857 osed 6

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, $p_{\rm t} / p_{\rm t_{\infty}}$ - Continued

$M_{\infty} =$	1	.0	_ α =		5.0°	m ₁ ,	/m _∞ =	0.299			$\mathtt{c}_{\mathtt{D}_{\!\mathtt{a}}}$	=	
₱ _{t2}	/p _t =	0.874	(x/:	R) _{lip} =	4.18	<u>30</u> Δ	p _{t2} = -	0.114		Bl exit s	eed sett in (g = <u>Clo</u>	sed
RAKE		**	TUBE	NO.			RAKE		***	TUBE	NO.		1
NO.	1	2	3	4	5	6_	NO.	1	2	3	4	5_	6
1	0.906	0.915	0.930	0.938	0.921	0.871	2	0.884	0.880	0.886	0.897	0.881	
3	0.856	0.858	0.863	0.869	0.862	0.843	4	0.851	0.855	0.862	0.865	0.856	0.838
5	0.856	0.863	0.868	0.865	0.869	0.849	6	0.887	0.885	0.892	0.893	0.887	0.851
M _∞ :	= 1	.0	_ α =		.0°	m _i ,	/m _∞ =	0.303			$\mathtt{c}_{\mathtt{D}}$	a =	
ਙ.	/n. =	019	(v /s	p) =	/ O3	30 4.	_	0.018		B: exit	leed	а - С	llogod
	/p _t =											s - <u> </u>	Josed
RAKE	 1		TUBE	NO.			RAKE			TUBE	NO.		
NO.] 1	2	3	4	5	6	NO.	1_	2	3	4	5	6
	0.913				4	! !		ļļ J				1	
ř i	0.906		: :		ŧ.	!!		ш				1	
5	0.909	0.908	0.916	0.921	0.924	0.893	6	0.937	0.948	0.972	0.971	0.934	0.883
M _∞ =	: <u> </u>	. 2	_ a =	0.	.0°	m _i	$/m_{\infty} =$	0.328	3		c_{D}	a =	.150
	: <u>1</u>									B	leed		
₽ _{t₂}	$p_{t_{\infty}} =$	0.799)_ (x/i	R) _{lip} =	4.180	<u>)</u> Δ ₁	p _{t2} =	0.210		ex i t	leed sett i n	g =	
₽ _{t₂}	$p_{t_{\infty}} =$	0.799)_ (x/i	R) _{lip} =	4.180	<u>)</u> Δ ₁	p _{t2} =	0.210		ex i t	leed sett i n	g =	
₽ _{t₂}	$p_{t_{\infty}} =$	0.799)_ (x/i	R) _{lip} =	4.180	<u>)</u> Δ ₁	p _{t2} =	0.210		ex i t	leed sett i n	g =	
RAKE	p _{t∞} =	0.799)_ (x/) TUBE	R) _{lip} =	4.180) <u>\</u>	Pts =	0.210	2	exit TUBE	leed settin	g =	Closed 6
RAKE NO.	$p_{t_{\infty}} =$	2 0.801	TUBE 3 0.842	R) _{lip} = NO. 4 0.866	4.180 5 0.831	6 0.727	RAKE	0.2 <u>10</u> 1 0.769	2	Exit TUBE 3 0.838	NO.	g =	Closed 6
RAKE NO.	p _{t_∞} =	0.799 2 0.801 0.788	TUBE 3 0.842 0.828	NO. 4 0.866 0.848	5 0.831 0.814	ο Δη 6 0.727 0.710	PAKE NO.	0.2 <u>10</u> 1 0.769 0.771	2 0.799 0.794	TUBE 3 0.838 0.835	NO. 4 0.867 0.861	g =	6 0.728
RAKE NO.	p _t _∞ = 1 0.767 0.769 0.772	0.799 2 0.801 0.788 0.808	TUBE 3 0.842 0.828 0.839	NO. 4 0.866 0.848 0.861	5 0.831 0.814 0.823	6 0.727 0.710 0.710	RAKE NO. 2 4	0.2 <u>10</u> 1 0.769 0.771 0.772	2 0.799 0.794 0.795	TUBE 3 0.838 0.835 0.837	NO. 4 0.867 0.868	5 0.811 0.830 0.808	6 0.728 0.700
RAKE NO. 1 3 5	p _{t_∞} = 1 0.767 0.769 0.772	0.799 2 0.801 0.788 0.808	TUBE 3 0.842 0.828 0.839 α =	R) _{lip} = NO. 4 0.866 0.848 0.861	5 0.831 0.814 0.823	6 0.727 0.710 0.710	$P_{t_{2}} = \begin{cases} RAKE \\ NO \end{cases}$ 2 4 6 $/m_{\infty} = \frac{1}{2}$	0.210 1 0.769 0.771 0.772	2 0.799 0.794 0. <u>795</u>	E exit TUBE 3 0.838 0.835 0.837	NO. 4 0.867 0.861 0.868	5 0.811 0.830 0.808 = 0.	6 0.728 0.700
RAKE NO. 1 3 5	p _t _∞ = 1 0.767 0.769 0.772	0.799 2 0.801 0.788 0.808	TUBE 3 0.842 0.828 0.839 α =	R) _{lip} = NO. 4 0.866 0.848 0.861	5 0.831 0.814 0.823	6 0.727 0.710 0.710	$P_{t_{2}} = \begin{cases} RAKE \\ NO \end{cases}$ 2 4 6 $/m_{\infty} = \frac{1}{2}$	0.210 1 0.769 0.771 0.772	2 0.799 0.794 0. <u>795</u>	E exit TUBE 3 0.838 0.835 0.837	NO. 4 0.867 0.861 0.868	5 0.811 0.830 0.808 = 0.	6 0.728 0.700
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	p _{t_∞} = 1 0.767 0.769 0.772	0.799 2 0.801 0.788 0.808	TUBE 3 0.842 0.828 0.839 α =	R) _{lip} = NO. 4 0.866 0.848 0.861 R) _{lip} =	5 0.831 0.814 0.823	6 0.727 0.710 0.710	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = p_{t_2} = RAKE	0.210 1 0.769 0.771 0.772	2 0.799 0.794 0. <u>795</u>	E exit TUBE 3 0.838 0.835 0.837	NO. 4 0.867 0.861 0.868 CD	5 0.811 0.830 0.808 = 0.	6 0.728 0.700
RAKE NO. 1 3 5 M _∞ =	p _{t_∞} = 1 0.767 0.769 0.772	0.799 2 0.801 0.788 0.808	TUBE 3 0.842 0.828 0.839 α = (x/	R) _{lip} = NO. 4 0.866 0.848 0.861 R) _{lip} =	5 0.831 0.814 0.823	6 0.727 0.710 0.710	$P_{t_2} = \begin{cases} RAKE & NO. \end{cases}$ $2 & 4 & 6 \\ /m_{\infty} = & P_{t_2} = & 0 \end{cases}$	0.210 1 0.769 0.771 0.772	2 0.799 0.794 0. <u>795</u>	TUBE 3 0.838 0.835 0.837	NO. 4 0.867 0.861 0.868 CD	5 0.811 0.830 0.808 = 0.	6 0.728 0.700
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	1 0.767 0.769 0.772 1	0.799 2 0.801 0.788 0.808 .2 0.868	TUBE 3 0.842 0.828 0.839 α = (x/ TUBE 3 0.872	R) _{lip} = NO. 4 0.866 0.848 0.861 R) _{lip} = NO. 4 0.885	4.180 5 0.831 0.814 0.823 0.0° 4.180 5 0.884	6 0.727 0.710 0.710 0.710 \(\text{\tin}\text{\tett{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi{\texi{\texi{\texi{\texi{\texi\titil\titil\tint{\texi\texi{\texit{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\te	$\begin{array}{c} P_{t_2} = \\ RAKE \\ NO. \\ 2 \\ 4 \\ 6 \\ \\ m_{\infty} = \\ \\ P_{t_2} = \\ \\ RAKE \\ NO. \\ \\ 2 \end{array}$	0.210 1 0.769 0.771 0.772 0.30 0.056	2 0.799 0.794 0.795	TUBE 3 0.838 0.835 0.837 Exit TUBE	NO. NO. NO. 0.867 0.861 0.868 CD. leed settin	5 0.811 0.830 0.808 = 0.	6 0.728 0.700 161 Closed
RAKE NO.	1 0.767 0.769 0.772 1	0.799 2 0.801 0.788 0.808 .2 0.868 2 0.857 0.860	TUBE 3 0.842 0.828 0.839 α = (x/ TUBE 3 0.872 0.880	R) _{lip} = NO. 4 0.866 0.848 0.861 R) _{lip} = NO. 4 0.885 0.891	5 0.831 0.814 0.823 0.0° 4.180 5 0.884 0.879	6 0.727 0.710 0.710 0.710 Δ	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2 4 2 4	0.210 1 0.769 0.771 0.772 0.30 0.056 1 0.858 0.853	2 0.799 0.794 0.795 7 2 0.866 0.860	TUBE 3 0.835 0.837 Exit TUBE 3 0.877 0.869	NO. 4 0.867 0.861 0.868 CD 3eed settin	5 0.811 0.830 0.808 = 0. ng = 5 0.881 0.878	6 0.728 0.700 161 Closed

Table 3.- TRANSONIC ENGINE-FACE PRESSURE RECOVERY DATA, p_t/p_t_ $_{\infty}$ - Concluded

M _∞ :	=	1.2	_ a =	=	0.0°	m _j	$1/m_{\infty} =$	0.27	8	-	$\mathtt{c}_{\mathtt{D}_{\!ar{z}}}$. =	0.203
<u>₽</u> t	₂ /p _t , =	<u>0.864</u>	(x/	'R) _{lip} =	<u>4.180</u>		\p _{t2} =	0.028		B exit	leed settin	g =	Closed
RAKE NO.	1			NO. 4 0.875	I	1	П	II	I	1	I	1	1 1
3	0.854	0.857	0.867	0.873	0.867	0.852	4	∏ 0.853	0.856	0.863	0.874	0.872	0.854
M_{∞}	=	1.2	_ α :	=	0.0°	m <u>i</u>	$/m_{\infty} =$	0.3	35	- 12	$c_{\mathbb{D}}$	a = _0	.166
Pt:	$_{\rm p}/{\rm p}_{\rm t_{\infty}}$ =	0.887	_ (x/	R) _{lip} =	4.03	<u>0</u>	p _{t2} = .	0.198		ex i t	settir	ng =	Closed
RAKE NO.	0.905	0.912	0.934	NO. 4 0.935 0.935	0.885	0.776	2	0.906	0.915	0.928	0.934	0.858	
5	0.908	0.917	0.934	0.932	0.867	0.768	6	0.910	0.928	0.939	0.938	0.858	0.759
						•	•	ш.	1	1	,	1	1 1
M _∞ :	=	1.2		=	0.0°	mi	•	. .	•		, c _D	a = _0	, ,
			α =				/m _∞ =	0.317		В	, C _D leed		1.76
	pt _w =	2 0.908 0.911	α = 2 (x/ TUBE 3 0.931 0.925	R) _{lip} = NO. 4 0.945		0	$/m_{\infty} =$ $p_{t_2} =$ RAKE NO.	0.317 0.064 1 0.905 0.901	2 0.916 0.908	TUBE 3 0.927 0.932	CD leed settin NO.	g = <u>C</u> 5 0.941 0.944	10sed
RAKE NO. 1 3 5	Pt _w =	2 0.908 0.911 0.918	α = 2 (x/ TUBE 3 0.931 0.925 0.938	R) _{lip} = NO. 4 0.945	4.030 5 0.948 0.943	0	$/m_{\infty} =$ $p_{t_2} =$ RAKE NO. 2 4 6	0.317 0.064 1 0.905 0.901	2 0.916 0.908 0.920	TUBE 3 0.927 0.932	C _D leed settin NO. 4 0.946 0.947 0.952	g = <u>C</u> 5 0.941 0.941	0.176 losed 6 0.911 0.893
RAKE NO. 1 3 5	1 0.902 0.904 0.904	2 0.908 0.911 0.918	$\alpha = \frac{\alpha}{2} (x/x)$ TUBE 3 0.931 0.925 0.938	R) _{lip} = NO. 4 0.945 0.943 0.942	4.030 5 0.948 0.943 0.943	0	$/m_{\infty} =$ $p_{t_2} =$ RAKE NO. 2 4 6	0.317 0.064 1 0.905 0.901 0.908	2 0.916 0.908 0.920	TUBE 3 0.927 0.932 0.936	CD leed settin NO. 4 0.946 0.947	g = <u>C</u> 5 0.941 0.944 0.941 = <u>O.</u>	0.176 losed 6
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE	1 0.902 0.904 0.904	2 0.908 0.911 0.918	α = 2 (x/ TUBE 3 0.931 0.925 0.938 α = 6 (x/ TUBE	R) _{lip} = NO. 4 0.945 0.943 0.942 R) _{lip} = NO.	4.030 5 0.948 0.943 0.943 0.0° 4.03	0.915 0.900 0.898 m ₁	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $p_{t_2} =$ $RAKE$	0.317 0.064 1 0.905 0.901 0.908 0.275	2 0.916 0.908 0.920	TUBE 3 0.927 0.932 0.936 Exit Become	CD leed settin NO. 4 0.946 0.947 0.952 CD leed settin	g =C 5 0.941 0.944 0.941 =O. g =C	0.176 losed 6
RAKE NO. 1 3 5 M _{\infty} = \bar{p}_{t_2} RAKE NO.	1 0.902 0.904 0.904	2 0.908 0.911 0.918	$\alpha = \frac{1}{2} (x)$ TUBE 3 0.931 0.925 0.938 $\alpha = \frac{1}{2} (x)$ TUBE 3	R) _{lip} = NO. 4 0.945 0.943 0.942 R) _{lip} = NO. 4	4.030 5 0.948 0.943 0.943 0.0° 4.03	0 Δ 6 0.915 0.900 0.898 m ₁ 30 Δ	$/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $p_{t_2} =$ $RAKE$ NO .	0.317 0.064 1 0.905 0.901 0.908 0.275	2 0.916 0.908 0.920	TUBE 3 0.927 0.932 0.936 Bexit TUBE	CD leed settin NO. 4 0.946 0.947 0.952 CD leed settin	g = _C 5 0.941 0.944 0.941 = _O. g = _C	0.176 losed 6 0.911 0.893 .260 losed
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE	1 0.902 0.904 0.904	2 0.908 0.911 0.918 1.2 0.906	$\alpha = \frac{1}{2} (x)$ TUBE 3 0.931 0.925 0.938 $\alpha = \frac{1}{2} (x)$ TUBE 3 0.912	R) _{lip} = NO. 4 0.945 0.943 0.942 R) _{lip} = NO.	4.030 0.948 0.943 0.943 0.0° 4.03 5 0.927	0 Δ 0.915 0.900 0.898 m ₁ 0 6 0.911	$/m_{\infty} =$ $P_{t_2} =$ $RAKE$ NO . 2 4 6 $/m_{\infty} =$ $P_{t_2} =$ $RAKE$ NO . 2	0.317 0.064 1 0.905 0.901 0.908 0.275 0.0	2 0.916 0.908 0.920 43 2	TUBE 3 0.936 B exit TUBE 3 0.903	CD leed settin NO. 4 0.946 0.947 0.952 CD leed settin	g = _C 5 0.941 0.944 0.941 = _O. g = _C	0.176 losed 0.911 0.893 .260 losed

Table 4.- INDEX TO FIGURES

```
Figure
            Model photograph
    1
            Sketches of model
    3
           Design flow field
           Area distributions
    5
           Theoretical mass flow ratio
 6-21
            Design Mach number performance
                     Supercritical performance, bleed exit setting A
                        (\alpha = 0^{\circ}, m_{\text{DD}}/m_{\infty} = 0)
                     Inlet contraction ratio
             7
                     Supercritical performance (\alpha = 0^{\circ}, m_{bp}/m_{\infty} = 0)
                     Total pressure distortion profiles (\alpha = 0^{\circ}, m_{\rm bp}/m_{\infty} = 0)
             9
            10
                     Supercritical bleed blow, individual zones
                       (\alpha = 0^{\circ}, m_{bp}/m_{\infty} = 0)
                     Bleed plenum chamber pressure recoveries (\alpha = 0^{\circ},
            11
                       m_{\rm bp}/m_{\infty} = 0
                     Static pressure distributions (\alpha = 0^{\circ}, m_{nn}/m_{nn} = 0)
            12
                     Flow profiles (\alpha = 0^{\circ}, m_{\rm bp}/m_{\infty} = 0)
            13
            14
                     Tolerance to change in angle of attack (m_{\rm bn}/m_{\infty}=0)
                     Supercritical performance with bypass (\alpha = 0^{\circ})
            15-16
                     Bypass plenum chamber pressure recoveries (\alpha = 0^{\circ})
            17
                     Effect of bypass on distortion profiles (\alpha = 0^{\circ})
            1.8
                     Static pressure distributions with bypass (\alpha = 0^{\circ})
            19
                     Maximum performance at angle of attack with bypass
            20
            21
                     Supercritical performance at angle of attack with bypass
 22-37
            Off-design Mach number performance
                     Supercritical performance (\alpha = 0^{\circ}, m_{\rm bp}/m_{\infty} = 0)
            22
                     Total pressure distortion profiles (\alpha = 0^{\circ}, m_{\rm bp}/m_{\infty} = 0)
            23
                     Supercritical bleed flow, individual zones (\alpha = 0^{\circ},
            24
                       m_{DD}/m_{\infty} = 0
                     Bleed plenum chamber pressure recoveries (\alpha = 0^{\circ},
            25
                       m_{DD}/m_{\infty} = 0
            26-28 Static pressure distributions (\alpha = 0^{\circ}, m_{bp}/m_{\infty} = 0)
                     Flow profiles (\alpha = 0^{\circ}, m_{op}/m_{\infty} = 0)
            29
```

Table 4.- INDEX TO FIGURES - Concluded

Figure		
	30	Tolerance to change in angle of attack $(m_{\rm bp}/m_{\infty}=0)$
	31- 32	Supercritical performance with bypass $(\alpha = 0^{\circ})$
j	33	Bypass plenum chamber pressure recoveries ($\alpha = 0^{\circ}$)
	3 ¹ 4	Effect of bypass on distortion profiles $(\alpha = 0^{\circ})$
	35	Static pressure distributions with bypass $(\alpha = 0^{\circ})$
	36	Maximum performance at angle of attack with bypass
	37	Supercritical performance at angle of attack with bypass
38	Maximum performance at angle of attack $(m_{\rm bp}/m_{\infty}=0)$	
39	Maximum performance with bypass $(\alpha = 0^{\circ})$	
40-43	Effects of unstart on the inlet parameters	
44-46	Transonic performance	

A-39809

Figure 1.- Model mounted in supersonic wind tunnel.

(a) Overall model.

Figure 2.- Model.

(b) Instrumentation, bleed and bypass configuration.

Figure 2.- Concluded.

Figure 3. - Design theoretical flow field.

Figure 4. - Area distributions.

Figure 5.- Inlet theoretical mass-flow ratios, α = 0°.

Figure 6.- Supercritical performance for various cowl lip positions; $M_{\infty} = 3.50$, $\alpha = 0^{\circ}$, $m_{\rm bp}/m_{\infty} = 0$, bleed exit setting A.

 $\| \mathbf{J} \|$

Figure 7.- Inlet contraction ratio.

Figure 8.- Supercritical performance; M_{∞} = 3.50, (x/R)_{lip} = 2.835, α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Bleed exit

setting

Figure 9.- Engine-face distortion profiles, maximum pressure recovery; M_{∞} = 3.50, α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Figure 10.- Supercritical bleed flow, individual bleed zones; M_{∞} = 3.50, $(x/R)_{\text{lip}}$ = 2.835, α = 0°, m_{bp}/m_{∞} = 0.

Figure 11.- Bleed plenum chamber pressure recovery; $\rm M_{\infty}$ = 3.50, α = 0°, $\rm m_{\rm bp}/\rm m_{\infty}$ = 0.

Figure 12.- Static pressure distribution; bleed exit seeting B; $m_{\rm bp}/m_{\infty}=0$, $M_{\infty}=3.50$, $(x/R)_{\rm lip}=2.835$, $\alpha=0^{\circ}$.

(b)
$$\bar{p}_{t_2}/p_{t_{\infty}} = 0.865$$
, $m_{bl}/m_{\infty} = 0.161$

Figure 12.- Continued.

(c) $\bar{p}_{t_2}/p_{t_\infty} = 0.828$, $m_{bl}/m_\infty = 0.136$

Figure 12.- Concluded.

Figure 13.- Pitot pressure profiles, maximum pressure recovery, bleed exit setting A; M_{∞} = 3.50, $(x/R)_{\text{lip}}$ = 2.840, α = 0°, m_{bp}/m_{∞} = 0.

Figure 14.- Inlet tolerance to change in angle of attack, bleed exit setting B; M_{∞} = 3.50, α = 0.

Figure 15.- Change in mass flow at the engine face for various settings of the bypass exit, bleed exit setting B; $M_{\infty} = 3.50$, $(x/R)_{lip} = 2.835$, $\alpha = 0^{\circ}$.

Figure 16.- Supercritical performance for various settings of the bypass exit, bleed exit setting B; M_{∞} = 3.50, $(x/R)_{\text{lip}}$ = 2.835, α = 0°.

Figure 17.- Bypass plenum chamber pressure recovery, bleed exit setting B; $\rm M_{\infty}$ = 3.50, α = 0°.

Figure 18.- Effect of bypass mass flow on engine-face distortion profiles, maximum pressure recovery, bleed exit setting B; M_{∞} = 3.50, α = 0°.

Figure 19.- Effect of bypass on the static pressure distributions, bleed exit setting B, maximum pressure recovery; M_{∞} = 3.50, α = 0°, $(x/R)_{\mbox{lip}}$ = 2.835.

Figure 20.- Maximum performance at angle of attack for various amounts of bypass mass flow, bleed exit setting B; $\rm M_{\infty}$ = 3.50.

Figure 21.- Supercritical performance at angle of attack with and without bypass, bleed exit setting B; M_∞ = 3.50.

Figure 22.- Off design supercritical performance; α = 0°, $\rm m_{bp}/\rm m_{\infty}$ = 0.

(b) $M_{\infty} = 3.00$, $(x/R)_{lip} = 3.000$

Figure 22.- Continued.

(c) $M_{\infty} = 2.75$, $(x/R)_{\text{lip}} = 3.230$

Figure 22.- Continued.

(d) $M_{\infty} = 2.50$, $(x/R)_{lip} = 3.370$

Figure 22. - Continued.

(e) M_{∞} = 2.25, $(x/R)_{\text{lip}}$ = 3.600

Figure 22.- Continued.

(f) M_{∞} = 2.00, (x/R)_{lip} = 3.776

Figure 22. - Continued.

Figure 22.- Continued.

(h) $M_{\infty} = 1.55$, $(x/R)_{\text{lip}} = 3.890$

Figure 22.- Concluded.

Figure 23.- Off design engine-face distortion profiles, maximum pressure recovery; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Figure 23.- Continued.

Figure 23. - Continued.

Figure 23.- Concluded.

Figure 24.- Off-design supercritical bleed flow, individual bleed zones; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

(b)
$$M_{\infty} = 3.00$$
, $(x/R)_{lip} = 3.000$

Figure 24. - Continued.

Figure 24. - Continued.

Figure 24.- Continued.

(e) $M_{\infty} = 2.25$, $(x/R)_{1ip} = 3.600$

Figure 24. - Continued.

(f) M_{∞} = 2.00, $(x/R)_{lip}$ = 3.780

Figure 24. - Continued.

(g) $M_{\infty} = 1.75$, $(x/R)_{1ip} = 3.870$

Figure 24. - Continued.

(h)
$$M_{\infty} = 1.55$$
, $(x/R)_{\text{lip}} = 3.890$

Figure 24. - Concluded.

Figure 25.- Off-design bleed plenum chamber pressure recoveries; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Figure 25.- Continued.

Figure 25. - Continued.

Figure 25.- Concluded.

Figure 26.- Static pressure distribution, bleed exit setting B; M_{∞} = 3.00, $(x/R)_{\text{lip}}$ = 3.000, α = 0°, m_{bp}/m_{∞} = 0.

(b) $\bar{p}_{t2}/p_{t\infty} = 0.871$, $m_{bl}/m_{\infty} = 0.161$

Figure 26.- Continued.

(c) $\bar{p}_{t_2}/p_{t_\infty}$ = 3.853, m_{bl}/m_∞ = 3.150

Figure 26. - Concluded.

Figure 27.- Static pressure distribution, bleed exit setting B; $M_{\infty} = 2.50$, $(x/R)_{\text{lip}} = 3.370$, $\alpha = 0^{\circ}$, $m_{\text{bp}}/m_{\infty} = 0$.

Figure 27.- Continued.

(c)
$$\bar{p}_{t_2}/p_{t_\infty}$$
 = 0.857, m_{bl}/m_∞ = 0.143

Figure 27. - Concluded.

Figure 28.- Static pressure distribution, bleed exit setting B; M_{∞} = 2.00, $(x/R)_{\text{lip}}$ = 3.780, α = 0°, m_{bp}/m_{∞} = 0.

(b)
$$\bar{p}_{t2}/p_{t\infty}$$
 = 0.865, m_{bl}/m_{∞} = 0.140

Figure 28.- Concluded.

Figure 29.- Off design pitot pressure profiles, maximum pressure recovery, bleed exit setting A; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

(b)
$$M_{\infty} = 3.00$$
, $(x/R)_{lip} = 3.000$

Figure 29. - Continued.

(c) M_{∞} = 2.75, $(x/R)_{1ip}$ = 3.220

Figure 29. - Continued.

(d)
$$M_{\infty} = 2.50$$
, $(x/R)_{lip} = 3.370$

Figure 29. - Concluded.

Figure 30.- Off design inlet tolerance to change in angle of attack, bleed exit setting B; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Figure 30. - Concluded.

Figure 31.- Off-design change in mass flow at the engine face for various settings of the bypass exit, bleed exit setting B; α = 0°.

(b) $M_{\infty} = 3.00$, $(x/R)_{lip} = 3.000$

Figure 31.- Continued.

(c) $M_{\infty} = 2.75$, $(x/R)_{lip} = 3.220$

Figure 31.- Continued.

(d) $M_{\infty} = 2.50$, $(x/R)_{lip} = 3.370$

Figure 31.- Continued.

(e) $M_{\infty} = 2.25$, $(x/R)_{\text{lip}} = 3.600$ Figure 31.- Continued.

(f) $M_{\infty} = 2.00$, $(x/R)_{\text{lip}} = 3.780$ Figure 31.- Continued.

m₂

(g) $M_{\infty} = 1.75$, $(x/R)_{\text{lip}} = 3.870$ Figure 31.- Continued.

(h) $M_{\infty} = 1.55$, $(x/R)_{\text{lip}} = 3.890$ Figure 31.- Concluded.

Figure 32.- Off-design supercritical performance for various settings of the bypass exit, bleed exit setting B; α = 0°.

Figure 32.- Continued.

(c) M_{∞} = 2.75, $(x/R)_{\text{lip}}$ = 3.220

Figure 32. - Continued.

(d) $M_{\infty} = 2.50$, $(x/R)_{\text{lip}} = 3.370$

Figure 32.- Continued.

Figure 32.- Continued.

(f) $M_{\infty} = 2.00$, $(x/R)_{\text{lip}} = 3.780$ Figure 32.- Continued.

Figure 32.- Continued.

Figure 32.- Concluded.

Figure 33.- Off-design bypass plenum chamber pressure recovery, bleed exit setting B; α = 0°.

(b) $M_{\infty} = 3.00$

Figure 33.- Continued.

(g) $M_{\infty} = 1.75$

Figure 33.- Continued.

Figure 33.- Concluded.

Figure 34.- Off-design effect of bypass on engine-face distortion profiles, maximum pressure recovery, bleed exit setting B; $\alpha = 0^{\circ}$.

Figure 34.- Continued.

Figure 34.- Continued.

Figure 34. - Continued.

Figure 34. - Continued.

Figure 34.- Continued.

Figure 34.- Continued.

Figure 34.- Concluded.

Figure 35.- Off-design effect of bypass on the static pressure distributions, bleed exit setting B, maximum pressure recovery; $\alpha = 0^{\circ}$.

Figure 35.- Continued.

Figure 35. - Continued.

Figure 35.- Continued.

Figure 35.- Continued.

(f) $M_{\infty} = 2.00$, $(x/R)_{lip} = 3.780$

Figure 35.- Continued.

(g) $M_{\infty} = 1.75$, $(x/R)_{\text{lip}} = 3.870$

Figure 35. - Concluded.

Figure 36.- Off-design maximum performance at angle of attack for various amounts of bypass mass flow, bleed exit setting B.

Figure 36.- Continued.

(g) $M_{\infty} = 1.75$

Figure 36.- Concluded.

Figure 37.- Off-design supercritical performance at angle of attack with and without bypass, bleed exit setting B.

Figure 37.- Continued.

Figure 37.- Continued.

(d) $M_{\infty} = 2.50$

Figure 37.- Continued.

Figure 37.- Continued.

Figure 37.- Continued.

Figure 37.- Concluded.

Figure 38.- Maximum performance at angle of attack; $m_{\rm bp}/m_{\infty}=0$.

Figure 38. - Continued.

Figure 38.- Concluded.

Figure 39.- Maximum performance for various amounts of bypass mass flow; α = 0°.

(b) Bleed exit setting B
Figure 39.- Continued.

(c) Bleed exit setting C
Figure 39.- Concluded.

Figure 40.- Inlet unstart and restart cowl-lip position; $\alpha = 0^{\circ}$.

Figure 41.- Effect of unstarting the inlet on the main performance parameters, bleed exit setting B; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Figure 42.- Effect of unstarting the inlet on the individual bleed flows, bleed exit setting B; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Figure 43.- Effect of unstarting the inlet on the individual bleed plenum chamber pressure recoveries, bleed exit setting B; $\alpha=0^{\circ}$, $m_{\rm bp}/m_{\infty}=0$.

Figure 44.- Transonic performance, bleed exit setting B; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Figure 44. - Continued.

Figure 44. - Continued.

Figure 44. - Continued.

Figure 44. - Continued.

Figure 44.- Continued.

Figure 44. - Continued.

Figure 44.- Concluded.

Figure 45.- Transonic performance with and without bleed; α = 0°, $m_{\rm bp}/m_{\infty}$ = 0.

Figure 45. - Continued.

Figure 45.- Continued.

Figure 45.- Concluded.

Figure 46.- Transonic performance at angle of attack; $(x/R)_{lip} = 4.030$, $m_{bp}/m_{\infty} = 0$.

Figure 46.- Continued.

Figure 46.- Concluded.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 OFFICIAL BUSINESS

FIRST CLASS MAIL

01U 001 26 51 3CS 70272 00903 AIR FORCE WEAPONS LABORATORY /WLOL/ KIRTLAND AFB, NEW MEXICO 87117

ATT E. LOU BOWMAN, CHIEF, TECH. LIBRARY

POSTMASTER: If Undeliverable (Section 15: Postal Manual) Do Not Retu

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546